42 research outputs found

    Present i futur de les cèl·lules dendrítiques

    Get PDF
    El sistema immunitari és una de les estructures més complexes del cos. Aquesta complexitat no és supèrflua, sinó que és totalment necessària per fer totes les tasques complicades a les quals fa front, com és el reconeixement i eliminació d'un ampli espectre de microorganismes i patògens, la detecció i destrucció de lesions oncològiques en un ampli rang de teixits i, mentre porta a terme aquestes tasques, el manteniment de la tolerància perifèrica per mitjà de la supressió de respostes perjudicials autoreactives dirigides contra teixits sans. Des del seu descobriment, fet per R. Steinman i col·laboradors fa uns quaranta anys, les cèl·lules dendrítiques (CD) s'han situat com uns elements clau en la direcció del sistema immunitari per portar a terme les seves tasques. En aquesta revisió mostrem una visió general sobre la biologia de les CD, els coneixements que se'n tenen fins al moment, les seves possibles aplicacions terapèutiques per al tractament de malalties i les incògnites que encara queden per respondre en investigacions futures.The immune system is probably one of the most complex cellular organisations in the body. Its complexity is not superfluous; rather, it is necessary to fulfil the complicated purpose of the immune system, namely: recognition of the diverse repertoire of microorganisms and pathogens; the detection of neoplastic lesions originating from a range of tissues; and, while executing these tasks, the maintenance of peripheral tolerance by suppressing detrimental responses against healthy tissues. Since they were discovered by R. Steinman and co. nearly forty years ago, dendritic cells (DCs) have emerged to be critical players in conducting the immune response to fulfil these roles. Here, we provide a general overview of DCs, what we currently know, their possible therapeutic applications and the questions that remain unanswered for future research

    Gram-negative enterobacteria induce tolerogenic maturation in dexamethasone conditioned dendritic cells

    Get PDF
    Dendritic cells have been investigated in clinical trials, predominantly with the aim of stimulating immune responses against tumours or infectious diseases. Thus far, however, no clinical studies have taken advantage of their specific immunosuppressive potential. Tolerogenic DCs may represent a new therapeutic strategy for human immune-based diseases, such as Crohn's disease, where the perturbations of the finely tuned balance between the immune system and the microflora result in disease. In the present report, we describe the generation of tolerogenic DCs from healthy donors and Crohn's disease patients using clinical-grade reagents in combination with dexamethasone as immunosuppressive agent and characterize their response to maturation stimuli. Interestingly, we found out that dexamethasone-conditioned DCs keep their tolerogenic properties to Gram-negative bacteria. Other findings included in this study demonstrate that the combination of dexamethasone with a specific cytokine cocktail yielded clinical-grade DCs with the following characteristics: a semi-mature phenotype, a pronounced shift towards anti-inflammatory versus inflammatory cytokine production and low T-cell stimulatory properties. Importantly, in regard to their clinical application, the tolerogenic phenotype of DCs remained stable after the elimination of dexamethasone and after a second stimulation with LPS or bacteria. All these properties make this cell product suitable to be tested in clinical trials of inflammatory conditions including Crohn's disease

    Novel tumor-targeted self-nanostructured and compartmentalized water-in-oil-in-water polyurethane-polyurea nanocapsules for cancer theragnosis

    Full text link
    Encapsulation of water-soluble bioactive compounds for enabling specific accumulation in tumor locations, while avoiding premature clearance and/or degradation in the bloodstream, is one of the main hallmarks in nanomedicine, especially that of NIR fluorescent probes for cancer theragnosis. The herein reported technology furnishes water-dispersible double-walled polyurethane-polyurea hybrid nanocapsules (NCs) loaded with indocyanine green (ICG-NCs), using a versatile and highly efficient one-pot and industrially scalable synthetic process based on the use of two different prepolymers to set up the NCs walls. Flow cytometry and confocal microscopy confirmed that both ICG-loaded NCs internalized in monocyte-derived dendritic cells (moDCs). The in vivo analysis of xenograft A375 mouse melanoma model revealed that amphoteric functionalization of NCs' surface promotes the selective accumulation of ICG-NCs in tumor tissues, making them promising agents for a less-invasive theragnosis of cancer

    A novel gene signature unveils three distinct immune- metabolic rewiring patterns conserved across diverse tumor types and associated with outcomes

    Full text link
    Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches

    Androgen receptor and its splicing variant 7 expression in peripheral blood mononuclear cells and in circulating tumor cells in metastatic castration-resistant prostate cancer

    Get PDF
    Androgen receptor (AR) signaling remains crucial in castration-resistant prostate cancer (CRPC). Since it is also essential in immune cells, we studied whether the expression of AR full-length (ARFL) and its splicing variant ARV7 in peripheral blood mononuclear cells (PBMC) predicts systemic treatment response in mCRPC in comparison with circulating-tumor cells (CTC). We measured ARFL and ARV7 mRNA in PBMC and CTC from patients prior to receiving abiraterone (AA), enzalutamide (E), or taxanes by a pre-amplification plus quantitative reverse-transcription PCR. They were also tested in LNCaP-ARV7-transfected and in 22RV1 docetaxel-resistant (22RV1DR) cells. We studied 171 PBMC from 136 patients and from 24 non-cancer controls, and 47 CTC from 22 patients. High PBMC ARV7 levels correlated with worse AA/E and better taxane response. In taxane-treated patients high PBMC ARFL also correlated with longer progression-free survival (PFS). High ARV7 and ARFL expression were independently associated with better biochemical-PFS. Conversely, high CTC ARV7 and ARFL correlated with shorter radiological-PFS and overall survival, respectively. High ARV7 in 22RV1DR and LNCaP-ARV7 cells correlated with taxane resistance. In conclusion, ARFL and ARV7 at PBMC or CTC have a different predictive role in the taxane response, suggesting a potential influence of the AR pathway from PBMC in such response modulation

    Differences in peripheral and tissue immune cell populations following haematopoietic stem cell transplantation in Crohn's disease patients

    Get PDF
    Background and aims: recent studies have shown the efficacy of autologous haematopoietic stem cell transplantation [HSCT] in severely refractory Crohn's disease [CD] patients. HSCT is thought to eliminate auto-reactive cells; however, no specific studies of immune reconstitution in CD patients are available. Methods: we followed a group of CD patients [n = 18] receiving autologous HSCT, with 50% of them achieving endoscopic drug-free remission. To elucidate the mechanisms driving efficacy, we monitored changes after HSCT in blood and intestine immune-cell composition. CD patients [n = 22] receiving anti-tumour necrosis factor [TNF]-α were included for comparison. Results: severe immune ablation followed by HSCT induced dramatic changes in both peripheral blood T and B cells in all patients regardless of the efficacy of the treatment. Endoscopic remission at week 52 following HSCT was associated with significant intestinal transcriptional changes. A comparison of the remission signature with that of anti-TNFα identified both common and unique genes in the HSCT-induced response. Based on deconvolution analysis of intestinal biopsy transcriptome data, we show that response to HSCT, but not to anti-TNFα, is associated with an expansion of naïve B-cells, as seen in blood, and a decrease in the memory resting T-cell content. As expected, endoscopic remission, in response to both HSCT and anti-TNFα, led to a significant reduction in intestinal neutrophil and M1 macrophage content. Conclusions: peripheral blood immune remodelling after HSCT does not predict efficacy. In contrast, a profound intestinal T-cell depletion that is maintained long after transplant is associated with mucosal healing following HSCT, but not anti-TNFα

    A Phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study

    Get PDF
    [Background]: Immune check-point blockade (ICB) has shown clinical beneft in mismatch repair-defcient/microsatellite instability high metastatic colorectal cancer (mCRC) but not in mismatch repair-profcient/microsatellite stable patients. Cancer vaccines with autologous dendritic cells (ADC) could be a complementary therapeutic approach to ICB as this combination has the potential to achieve synergistic efects. [Methods]: This was a Phase I/II multicentric study with translational sub-studies, to evaluate the safety, pharmacodynamics and anti-tumor efects of Avelumab plus ADC vaccine in heavily pre-treated MSS mCRC patients. Primary objective was to determine the maximum tolerated dose and the efcacy of the combination. The primary end-point was 40% progressionfree survival at 6 months with a 2 Simon Stage. [Results]: A total of 28 patients were screened and 19 pts were included. Combined therapy was safe and well tolerated. An interim analysis (Simon design frst-stage) recommended early termination because only 2/19 (11%) patients were disease free at 6 months. Median PFS was 3.1 months [2.1–5.3 months] and overall survival was 12.2 months [3.2–23.2 months]. Stimulation of immune system was observed in vitro but not clinically. The evaluation of basal RNA-seq noted signifcant changes between pre and post-therapy liver biopsies related to lipid metabolism and transport, infammation and oxidative stress pathways. [Conclusions]: The combination of Avelumab plus ADC vaccine is safe and well tolerated but exhibited modest clinical activity. Our study describes, for the frst-time, a de novo post-therapy metabolic rewiring, that could represent novel immunotherapyinduced tumor vulnerabilities.The study was funded by grants from the FIS PI17/00732 from Instituto de Salud Carlos III, Premi Fi de Residència Emili Letang from Hospital Clínic Barcelona, Plan Nacional de I + D (PID-107139RB-C21 to DB-R and PID2020-115051RB-I00 to MC) and Grupo Español Multidisciplinar en Cáncer Digestivo (GEMCAD). The study was funded with Grants from Catalan Agency for Management of University and Research Grants (AGAUR) (2014-SGR-474, 2017-SGR-1174 and 2017-SGR-1033), Fundació la Marató de TV3 (201330.10), Instituto de Salud Carlos III (PI13/01728 and PI19/00740) and Fundacion Olga Torres (Modalitat A. 2019/2020) to JM. IMMETCOLS signature is under patent protection (EP21382772.8.) This research was financially supported by GEMCAD and (OR Avelumab was provided) by Merck, S.L.U., Madrid, Spain, an affiliate of Merck KGaA, Darmstadt, Germany, as part of an alliance between the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: https://doi.org/10.13039/100009945) and Pfizer

    Table_4_A novel gene signature unveils three distinct immune-metabolic rewiring patterns conserved across diverse tumor types and associated with outcomes.docx [Dataset]

    Get PDF
    Supplementary Table S4: Important features identified by One-way ANOVA and post-hoc analysis (Fisher’s LSD) comparing the expression of immune signatures in the IMMETCOLS Clusters.Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.Peer reviewe

    Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    Get PDF
    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version

    Table_5_A novel gene signature unveils three distinct immune-metabolic rewiring patterns conserved across diverse tumor types and associated with outcomes.docx [Dataset]

    Get PDF
    Supplementary Table S5: Important features identified by One-way ANOVA and post-hoc analysis (Fisher’s LSD) comparing the expression of immune genes in the IMMETCOLS Clusters.Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.Peer reviewe
    corecore