16 research outputs found

    Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    Get PDF
    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material – thereby isolating the signal to the cell-material interface and cell–cell contracts – would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non- biological inputs – material type, electrical stimulation, physical patterns – can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications

    Clinical Images: Late-stage hydroxychloroquine-associated retinopathy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/175186/1/acr211502.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/175186/2/acr211502_am.pd

    In Situ Forming Gelatin Hydrogels-Directed Angiogenic Differentiation and Activity of Patient-Derived Human Mesenchymal Stem Cells

    No full text
    Directing angiogenic differentiation of mesenchymal stem cells (MSCs) still remains challenging for successful tissue engineering. Without blood vessel formation, stem cell-based approaches are unable to fully regenerate damaged tissues due to limited support for cell viability and desired tissue/organ functionality. Herein, we report in situ cross-linkable gelatin−hydroxyphenyl propionic acid (GH) hydrogels that can induce pro-angiogenic profiles of MSCs via purely material-driven effects. This hydrogel directed endothelial differentiation of mouse and human patient-derived MSCs through integrin-mediated interactions at the cell-material interface, thereby promoting perfusable blood vessel formation in vitro and in vivo. The causative roles of specific integrin types (α1 and αvβ3) in directing endothelial differentiation were verified by blocking the integrin functions with chemical inhibitors. In addition, to verify the material-driven effect is not species-specific, we confirmed in vitro endothelial differentiation and in vivo blood vessel formation of patient-derived human MSCs by this hydrogel. These findings provide new insight into how purely material-driven effects can direct endothelial differentiation of MSCs, thereby promoting vascularization of scaffolds towards tissue engineering and regenerative medicine applications in humans

    The nesprin-cytoskeleton interface probed directly on single nuclei is a mechanically rich system

    No full text
    The cytoskeleton provides structure and plays an important role in cellular function such as migration, resisting compression forces, and transport. The cytoskeleton also reacts to physical cues such as fluid shear stress or extracellular matrix remodeling by reorganizing filament associations, most commonly focal adhesions and cell-cell cadherin junctions. These mechanical stimuli can result in genome-level changes, and the physical connection of the cytoskeleton to the nucleus provides an optimal conduit for signal transduction by interfacing with nuclear envelope proteins, called nesprins, within the LINC (linker of the nucleus to the cytoskeleton) complex. Using single-molecule on single nuclei assays, we report that the interactions between the nucleus and the cytoskeleton, thought to be nesprin-cytoskeleton interactions, are highly sensitive to force magnitude and direction depending on whether cells are historically interfaced with the matrix or with cell aggregates. Application of ~10-30 pN forces to these nesprin linkages yielded structural transitions, with a base transition size of 5-6 nm, which are speculated to be associated with partial unfoldings of the spectrin domains of the nesprins and/or structural changes of histones within the nucleus.This research work was funded and supported by NSF DMR BMAT under 1506717 and NIH EB under 019509 (D.A.B. and H.J.S.). H.J.S. was also supported by the Faculty Research Assistance Program of Yonsei University College of Medicine for 2000 (6–2016–0031). U.H.K was supported by the National Research Foundation of Korea (NRF) under MEST-2015M3A9B3028216. This work was also supported, in part, by Singapore-MIT Alliance for Research and Technology – BioSym, NSF under 1330792, and GAANN under P200A090323 (S.K.B and M.J.L).Peer Reviewe

    Comparative Molecular Analysis of Primary Central Nervous System Lymphomas and Matched Vitreoretinal Lymphomas by Vitreous Liquid Biopsy

    No full text
    Primary Central Nervous System Lymphoma (PCNSL) is a lymphoid malignancy of the brain that occurs in ~1500 patients per year in the US. PCNSL can spread to the vitreous and retina, where it is known as vitreoretinal lymphoma (VRL). While confirmatory testing for diagnosis is dependent on invasive brain tissue or cerebrospinal fluid sampling, the ability to access the vitreous as a proximal biofluid for liquid biopsy to diagnose PCNSL is an attractive prospect given ease of access and minimization of risks and complications from other biopsy strategies. However, the extent to which VRL, previously considered genetically identical to PCNSL, resembles PCNSL in the same individual with respect to genetic alterations, diagnostic strategies, and precision-medicine based approaches has hitherto not been explored. Furthermore, the degree of intra-patient tumor genomic heterogeneity between the brain and vitreous sites has not been studied. In this work, we report on targeted DNA next-generation sequencing (NGS) of matched brain and vitreous samples in two patients who each harbored VRL and PCSNL. Our strategy showed enhanced sensitivity for molecular diagnosis confirmation over current clinically used vitreous liquid biopsy methods. We observed a clonal relationship between the eye and brain samples in both patients, which carried clonal CDKN2A deep deletions, a highly recurrent alteration in VRL patients, as well as MYD88 p.L265P activating mutation in one patient. Several subclonal alterations, however, in the genes SETD2, BRCA2, TERT, and broad chromosomal regions showed heterogeneity between the brain and the eyes, between the two eyes, and among different regions of the PCNSL brain lesion. Taken together, our data show that NGS of vitreous liquid biopsies in PCNSL patients with VRL highlights shared and distinct genetic alterations that suggest a common origin for these lymphomas, but with additional site-specific alterations. Liquid biopsy of VRL accurately replicates the findings for PCNSL truncal (tumor-initiating) genomic alterations; it can also nominate precision medicine interventions and shows intra-patient heterogeneity in subclonal alterations. To the best of our knowledge, this study represents the first interrogation of genetic underpinnings of PCNSL with matched VRL samples. Our findings support continued investigation into the utility of vitreous liquid biopsy in precision diagnosis and treatment of PCNSL/VRL

    Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    No full text
    Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs) as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs) in vitro. Electrospun poly (l-lactic acid) (PLLA) fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis

    Aging Donor-Derived Human Mesenchymal Stem Cells Exhibit Reduced Reactive Oxygen Species Loads and Increased Differentiation Potential Following Serial Expansion on a PEG-PCL Copolymer Substrate

    No full text
    Human mesenchymal stem cells (hMSCs) have been widely studied for therapeutic development in tissue engineering and regenerative medicine. They can be harvested from human donors via tissue biopsies, such as bone marrow aspiration, and cultured to reach clinically relevant cell numbers. However, an unmet issue lies in the fact that the hMSC donors for regenerative therapies are more likely to be of advanced age. Their stem cells are not as potent compared to those of young donors, and continue to lose healthy, stemness-related activities when the hMSCs are serially passaged in tissue culture plates. Here, we have developed a cheap, scalable, and effective copolymer film to culture hMSCs obtained from aged human donors over several passages without loss of reactive oxygen species (ROS) handling or differentiation capacity. Assays of cell morphology, reactive oxygen species load, and differentiation potential demonstrate the effectiveness of copolymer culture on reduction in senescence-related activities of aging donor-derived hMSCs that could hinder the therapeutic potential of autologous stem cell therapies

    Molecular Characterization of a Rare Case of Bilateral Vitreoretinal T Cell Lymphoma through Vitreous Liquid Biopsy

    No full text
    Vitreoretinal lymphoma (VRL) is an uncommon eye malignancy, and VRLs of T cell origin are rare. They are difficult to treat, and their molecular underpinnings, including actionable genomic alterations, remain to be elucidated. At present, vitreous fluid liquid biopsies represent a valuable VRL sample for molecular analysis to study VRLs. In this study, we report the molecular diagnostic workup of a rare case of bilateral T cell VRL and characterize its genomic landscape, including identification of potentially targetable alterations. Using next-generation sequencing of vitreous-derived DNA with a pan-cancer 126-gene panel, we found a copy number gain of BRAF and copy number loss of tumor suppressor DNMT3A. To the best of our knowledge, this represents the first exploration of the T cell VRL cancer genome and supports vitreous liquid biopsy as a suitable approach for precision oncology treatments

    Development of Poly(É›-caprolactone) Scaffold Loaded with Simvastatin and Beta-Cyclodextrin Modified Hydroxyapatite Inclusion Complex for Bone Tissue Engineering

    No full text
    In this study, we developed poly(ɛ-caprolactone) (PCL) 3D scaffolds using a solid free form fabrication (SFF) technique. β-cyclodextrin (βCD) was grafted to hydroxyapatite (HAp) and this βCD grafted HAp was coated onto the PCL scaffold surface, followed by drug loading through an inclusion complex interaction between the βCD and adamantane (AD) or between βCD and simvastatin (SIM). The scaffold structure was characterized by scanning electron microscopy (SEM). The release profile of simvastatin in the β-CD grafted HAp was also evaluated. Osteogenic differentiation of adipose-derived stromal cells (ADSCs) was examined using an alkaline phosphatase activity (ALP) assay. The results suggest that drug loaded PCL-HAp 3-D scaffolds enhances osteogenic differentiation of ADSCs
    corecore