11,271 research outputs found
Improved Two-Dimensional Kinetics (TDK) computer program
Fluid properties, the boundary layer module, and regenerative cooling are discussed. Chemistry, low density flow effects, test cases, input and output for TDK, and documentation are also discussed
Performance predictions for an SSME configuration with an enlarged throat
The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared
Self-consistent theory of large amplitude collective motion: Applications to approximate quantization of non-separable systems and to nuclear physics
The goal of the present account is to review our efforts to obtain and apply
a ``collective'' Hamiltonian for a few, approximately decoupled, adiabatic
degrees of freedom, starting from a Hamiltonian system with more or many more
degrees of freedom. The approach is based on an analysis of the classical limit
of quantum-mechanical problems. Initially, we study the classical problem
within the framework of Hamiltonian dynamics and derive a fully self-consistent
theory of large amplitude collective motion with small velocities. We derive a
measure for the quality of decoupling of the collective degree of freedom. We
show for several simple examples, where the classical limit is obvious, that
when decoupling is good, a quantization of the collective Hamiltonian leads to
accurate descriptions of the low energy properties of the systems studied. In
nuclear physics problems we construct the classical Hamiltonian by means of
time-dependent mean-field theory, and we transcribe our formalism to this case.
We report studies of a model for monopole vibrations, of Si with a
realistic interaction, several qualitative models of heavier nuclei, and
preliminary results for a more realistic approach to heavy nuclei. Other topics
included are a nuclear Born-Oppenheimer approximation for an {\em ab initio}
quantum theory and a theory of the transfer of energy between collective and
non-collective degrees of freedom when the decoupling is not exact. The
explicit account is based on the work of the authors, but a thorough survey of
other work is included.Comment: 203 pages, many figure
Results of bottom trawl surveys carried out in Vietnamese waters (20-200 m) in 1996-1997
Bottom trawl surveys were conducted in the southwest monsoon season in 1996 (survey 1) and in the northeast monsoon season in 1996-97 (survey 2) throughout Vietnamese waters. The surveys mainly covered the depth zone 50-200 m but in the northeast monsoon season the depth zone 20-50 m was included in the northern and southern areas. Overall, 273 trawl hauls were conducted. The total biomass for Vietnamese waters in the depth zone 20-200 m was estimated at 700 000 t . Biomass estimates are given for the most abundant species. A relatively higher mean catch-per-unit effort (CPUE) was obtained from survey 2 than from survey 1 and in partcular at depth ranges 50-100 and 100-200 m in south Vietnam. Overall, the dominant families were Monacanthidae (34%), Carangidae (15%), Trichiuridae (9%) and Synodontidae (6%)
Effects of aluminum on hydrogen solubility and diffusion in deformed Fe-Mn alloys
We discuss hydrogen diffusion and solubility in aluminum alloyed Fe-Mn
alloys. The systems of interest are subjected to tetragonal and isotropic
deformations. Based on ab initio modelling, we calculate solution energies,
then employ Oriani's theory which reflects the influence of Al alloying via
trap site diffusion. This local equilibrium model is complemented by
qualitative considerations of Einstein diffusion. Therefore, we apply the
climbing image nudged elastic band method to compute the minimum energy paths
and energy barriers for hydrogen diffusion. Both for diffusivity and solubility
of hydrogen, we find that the influence of the substitutional Al atom has both
local chemical and nonlocal volumetric contributions.Comment: 9 page
Overlapping Coalition Formation for Efficient Data Fusion in Multi-Sensor Networks
This paper develops new algorithms for coalition formation within multi-sensor networks tasked with performing wide-area surveillance. Specifically, we cast this application as an instance of coalition formation, with overlapping coalitions. We show that within this application area sub-additive coalition valuations are typical, and we thus use this structural property of the problem to we derive two novel algorithms (an approximate greedy one that operates in polynomial time and has a calculated bound to the optimum, and an optimal branch-and-bound one) to find the optimal coalition structure in this instance. We empirically evaluate the performance of these algorithms within a generic model of a multi-sensor network performing wide area surveillance. These results show that the polynomial algorithm typically generated solutions much closer the optimal than the theoretical bound, and prove the effectiveness of our pruning procedure
Engineering and programming manual: Two-dimensional kinetic reference computer program (TDK)
The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket thrust chamber performance prediction methodology. The development of a methodology that includes all aspects of rocket engine performance from analytical calculation to test measurements, that is physically accurate and consistent, and that serves as an industry and government reference is presented. Recent interest in rocket engines that operate at high expansion ratio, such as most Orbit Transfer Vehicle (OTV) engine designs, has required an extension of the analytical methods used by the TDK computer program. Thus, the version of TDK that is described in this manual is in many respects different from the 1973 version of the program. This new material reflects the new capabilities of the TDK computer program, the most important of which are described
- …