11,305 research outputs found

    Pairing effect on the giant dipole resonance width at low temperature

    Full text link
    The width of the giant dipole resonance (GDR) at finite temperature T in Sn-120 is calculated within the Phonon Damping Model including the neutron thermal pairing gap determined from the modified BCS theory. It is shown that the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as compared to the one obtained neglecting pairing. This improves significantly the agreement between theory and experiment including the most recent data point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review

    Luby Transform Coding Aided Bit-Interleaved Coded Modulation for the Wireless Internet

    No full text
    Bit-Interleaved Coded Modulation using Iterative Decoding (BICM-ID) is amalgamated with Luby Transform (LT) coding. The resultant joint design of the physical and data link layer substantially improves the attainable Bit Error Rate (BER) performance. A Cyclic Redundancy Check (CRC) combined with a novel Log-Likelihood Ratio (LLR) based packet reliability estimation method is proposed for the sake of detecting and disposing of erroneous packets. Subsequently, bit-by-bit LT decoding is proposed, which facilitates a further BER improvement at a lower number of BICM-ID iterations. Finally, we revisit the pseudo random generator function used for designing the LT generator matrix

    Improved Two-Dimensional Kinetics (TDK) computer program

    Get PDF
    Fluid properties, the boundary layer module, and regenerative cooling are discussed. Chemistry, low density flow effects, test cases, input and output for TDK, and documentation are also discussed

    Performance predictions for an SSME configuration with an enlarged throat

    Get PDF
    The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared

    Disorder-induced superfluidity

    Full text link
    We use quantum Monte Carlo simulations to study the phase diagram of hard-core bosons with short-ranged {\it attractive} interactions, in the presence of uniform diagonal disorder. It is shown that moderate disorder stabilizes a glassy superfluid phase in a range of values of the attractive interaction for which the system is a Mott insulator, in the absence of disorder. A transition to an insulating Bose glass phase occurs as the strength of the disorder or interactions increases.Comment: 5 pages, 6 figure

    Clinically applicable GABA receptor positive allosteric modulators promote ß-cell replication.

    Get PDF
    A key goal of diabetes research is to develop treatments to safely promote human ß-cell replication. It has recently become appreciated that activation of γ-aminobutyric acid receptors (GABA-Rs) on ß-cells can promote their survival and replication. A number of positive allosteric modulators (PAMs) that enhance GABA's actions on neuronal GABAA-Rs are in clinical use. Repurposing these GABAA-R PAMs to help treat diabetes is theoretically appealing because of their safety and potential to enhance the ability of GABA, secreted from ß-cells, or exogenously administered, to promote ß-cell replication and survival. Here, we show that clinically applicable GABAA-R PAMs can increase significantly INS-1 ß-cell replication, which is enhanced by exogenous GABA application. Furthermore, a GABAA-R PAM promoted human islet cell replication in vitro. This effect was abrogated by a GABAA-R antagonist. The combination of a PAM and low levels of exogenous GABA further increased human islet cell replication. These findings suggest that PAMs may potentiate the actions of GABA secreted by islet ß-cells on GABAA-Rs and provide a new class of drugs for diabetes treatment. Finally, our findings may explain a past clinical observation of a GABAA-R PAM reducing HbA1c levels in diabetic patients

    Optimising Matrix Product State Simulations of Shor's Algorithm

    Get PDF
    We detail techniques to optimise high-level classical simulations of Shor's quantum factoring algorithm. Chief among these is to examine the entangling properties of the circuit and to effectively map it across the one-dimensional structure of a matrix product state. Compared to previous approaches whose space requirements depend on rr, the solution to the underlying order-finding problem of Shor's algorithm, our approach depends on its factors. We performed a matrix product state simulation of a 60-qubit instance of Shor's algorithm that would otherwise be infeasible to complete without an optimised entanglement mapping.Comment: 8 pages, 2 figures, 2 tables. v2 using PDFLaTeX compiler. v3 to include extra references. v4 for publication in Quantu

    Luby Transform Coding Aided Iterative Detection for Downlink SDMA Systems

    No full text
    A Luby Transform (LT) coded downlink Spatial Division Multiple Access (SDMA) system using iterative detection is proposed, which invokes a low-complexity near-Maximum-Likelihood (ML) Sphere Decoder (SD). The Ethernet-based Internet section of the transmission chain inflicts random packet erasures, which is modelled by the Binary Erasure Channel (BEC), which the wireless downlink imposes both fading and noise. A novel log-Likelihood Ratio based packet reliability metric is used for identifying the channel-decoded packets, which are likely to be error-infested. Packets having residual errors must not be passed on to the KT decoder for the sake of avoiding LT-decoding –induced error propagation. The proposed scheme is capable of maintaining an infinitesimally low packet error ratio in the downlink of the wireless Internet for Eb/n0 values in excess of about 3dB

    On the momentum-dependence of KK^{-}-nuclear potentials

    Get PDF
    The momentum dependent KK^{-}-nucleus optical potentials are obtained based on the relativistic mean-field theory. By considering the quarks coordinates of KK^- meson, we introduced a momentum-dependent "form factor" to modify the coupling vertexes. The parameters in the form factors are determined by fitting the experimental KK^{-}-nucleus scattering data. It is found that the real part of the optical potentials decrease with increasing KK^- momenta, however the imaginary potentials increase at first with increasing momenta up to Pk=450550P_k=450\sim 550 MeV and then decrease. By comparing the calculated KK^- mean free paths with those from KnK^-n/KpK^-p scattering data, we suggested that the real potential depth is V080V_0\sim 80 MeV, and the imaginary potential parameter is W065W_0\sim 65 MeV.Comment: 9 pages, 4 figure
    corecore