39 research outputs found
Anesthesiologists' and surgeons' perceptions about routine pre-operative testing in low risk patients: application of the Theoretical Domains Framework to identify factors that influence physicians' decisions to order pre-operative tests
Background
Routine pre-operative tests for anesthesia management are often ordered by both anesthesiologists and surgeons for healthy patients undergoing low-risk surgery. The Theoretical Domains Framework (TDF) was developed to investigate determinants of behaviour and identify potential behaviour change interventions. In this study, the TDF is used to explore anaesthesiologists’ and surgeons’ perceptions of ordering routine tests for healthy patients undergoing low-risk surgery.
Conclusion
We identified key factors that anesthesiologists and surgeons believe influence whether they order pre-operative tests routinely for anesthesia management for a healthy adults undergoing low-risk surgery. These beliefs identify potential individual, team, and organisation targets for behaviour change interventions to reduce unnecessary routine test ordering.
Methods
Sixteen clinicians (eleven anesthesiologists and five surgeons) throughout Ontario were recruited. An interview guide based on the TDF was developed to identify beliefs about preoperative testing practices. Content analysis of physicians’ statements into the relevant theoretical domains was performed. Specific beliefs were identified by grouping similar utterances of the interview participants. Relevant domains were identified by noting the frequencies of the beliefs reported, presence of conflicting beliefs, and perceived influence on the performance of the behaviour under investigation.
Results
Seven of the twelve domains were identified as likely relevant to changing clinicians’ behaviour about pre-operative test ordering for anesthesia management. Key beliefs were identified within these domains including: conflicting comments about who was responsible for the test-ordering (Social/professional role and identity); inability to cancel tests ordered by fellow physicians (Beliefs about capabilities and social influences); and the problem with tests being completed before the anesthesiologists see the patient (Beliefs about capabilities and Environmental context and resources). Often, tests were ordered by an anesthesiologist based on who may be the attending anesthesiologist on the day of surgery while surgeons ordered tests they thought anesthesiologists may need (Social influences). There were also conflicting comments about the potential consequences associated with reducing testing, from negative (delay or cancel patients’ surgeries), to indifference (little or no change in patient outcomes), to positive (save money, avoid unnecessary investigations) (Beliefs about consequences). Further, while most agreed that they are motivated to reduce ordering unnecessary tests (Motivation and goals), there was still a report of a gap between their motivation and practice (Behavioural regulation)
Improved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs
Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models.
Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases
Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge
Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95)
Predictors of Outcome After Mechanical Thrombectomy in Stroke Patients Aged ≥85 Years
International audienceBACKGROUND: The effectiveness of mechanical thrombectomy (MT) in elderly stroke patients remains debated. We aimed to describe outcomes and their predictors in a cohort of patients aged ≥ 85 years treated with MT. METHODS: Data from consecutive patients aged ≥ 85 years undergoing MT at two stroke centers between January 2016 and November 2019 were reviewed. Admission National Institutes of Health Stroke Scale (NIHSS), pre-stroke, and 3-month modified Rankin scale (mRS) were collected. Successful recanalization was defined as modified thrombolysis in cerebral ischemia score ≥ 2b. Good outcome was defined as mRS 0-3 or equal to pre-stroke mRS at 3 months. RESULTS: Of 151 included patients, successful recanalization was achieved in 74.2%. At 3 months, 44.7% of patients had a good outcome and 39% had died. Any intracranial hemorrhage (ICH) and symptomatic ICH occurred in 20.3% and 3.6%, respectively. Logistic regression analysis identified lower pre-stroke mRS score (adjusted odds ratio [aOR], 0.52; 95% CI, 0.36-0.76), lower admission NIHSS score (aOR, 0.90; 95% CI, 0.83-0.97), successful recanalization (aOR, 3.65; 95% CI, 1.32-10.09), and absence of ICH on follow-up imaging (aOR, 0.42; 95% CI, 0.08-0.75), to be independent predictors of good outcome. Patients with successful recanalization had a higher proportion of good outcome (45.3% vs 34.3%, p = 0.013) and lower mortality at 3 months (35.8% vs 48.6%, p = 0.006) compared to patients with unsuccessful recanalization. CONCLUSIONS: Among patients aged ≥ 85 years, successful recanalization with MT is relatively common and associated with better 3-month outcome and lower mortality than failed recanalization. Attempting to achieve recanalization in elderly patients using MT appears reasonable
Technology in Parkinson's disease: Challenges and opportunities
Contains fulltext :
168175.pdf (publisher's version ) (Closed access)The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. (c) 2016 International Parkinson and Movement Disorder Society