65 research outputs found

    An Artificial Intelligence Framework for Slice Deployment and Orchestration in 5G Networks

    Full text link
    © 2015 IEEE. Network slicing is a key enabler to successfully support 5G services with specific requirements and priorities. Due to the diversity of these services, slice deployment and orchestration are essential to guarantee service performance in a cost-effective way. Here, we propose an Artificial Intelligence framework for cross-slice admission and congestion control that simultaneously considers communication, computing, and storage resources to maximize resources utilization and operator revenue. First, we propose a smart feature extraction solution to analyze the characteristics of incoming requests together with the already deployed slices, and then automatically evaluates the request requirements to make appropriate decisions. Second, we design an online algorithm that controls the slice admission based on their priorities, the arrival and departure characteristics, and the available resources. To mitigate system overloading, our framework dynamically adjusts resources allocated to low priority slices, thereby reducing the dropping probability of new slice requests. The proposed algorithm offers outstanding advantages over traditional static approaches by automatically adapting the controller decisions to the system changes. Simulation results show that our framework significantly improves the resource utilization and reduces the slice request dropping probabilities up to 44% as compared to the baseline schemes

    Multiplexed control of spin quantum memories in a photonic circuit

    Full text link
    A central goal in many quantum information processing applications is a network of quantum memories that can be entangled with each other while being individually controlled and measured with high fidelity. This goal has motivated the development of programmable photonic integrated circuits (PICs) with integrated spin quantum memories using diamond color center spin-photon interfaces. However, this approach introduces a challenge in the microwave control of individual spins within closely packed registers. Here, we present a quantum-memory-integrated photonics platform capable of (i) the integration of multiple diamond color center spins into a cryogenically compatible, high-speed programmable PIC platform; (ii) selective manipulation of individual spin qubits addressed via tunable magnetic field gradients; and (iii) simultaneous control of multiple qubits using numerically optimized microwave pulse shaping. The combination of localized optical control, enabled by the PIC platform, together with selective spin manipulation opens the path to scalable quantum networks on intra-chip and inter-chip platforms.Comment: 10 pages, 4 figure

    HER2 testing in breast cancer: Opportunities and challenges

    Get PDF
    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results

    Chromogenic in situ hybridization (CISH): a novel alternative in screening archival breast cancer tissue samples for HER-2/neu status

    Get PDF
    BACKGROUND: Chromogenic in situ hybridization (CISH) is emerging as a practical, cost-effective, and valid alternative to fluorescent in situ hybridization in testing for gene alteration, especially in centers primarily working with immunohistochemistry (IHC). METHODS: We assessed Her-2/neu alteration using CISH on formalin-fixed paraffin-embedded primary invasive ductal carcinoma tumors in which IHC (CB11 antibody) had previously been performed, and we compared the results with IHC. The 160 selected cases were equally stratified randomly into the four IHC categories (scores of 0, 1+, 2+, and 3+). We also compared age at diagnosis and tumor histologic grade with IHC and CISH Her-2/neu. RESULTS: We were able to perform and evaluate CISH successfully on all cases. The agreement between 3+ IHC and CISH-amplified cases as well as between all IHC and CISH Her-2/neu negative cases was 100%, and the concordance on all positive cases was 72.50%, with an overall agreement of 86.25%. All the discordant cases had 2+ IHC scores. Although we noted Her-2/neu positivity more in premenopausal women, the age at diagnosis was not significantly associated with IHC or CISH results. Similarly, although the small group of well-differentiated tumors was apparently Her-2/neu negative in both tests, no significant association was noted between any tumor histologic grade and either IHC or CISH results. CONCLUSIONS: CISH is easily integrated into routine testing in our laboratory. It is a necessary adjunct in determining the subset of non-amplified IHC-positive invasive tumors that will not benefit from trastuzumab therapy. Those cases with 2+ IHC results will be triaged and subjected to CISH. Her-2/neu testing should be done on all breast cancer cases regardless of age at presentation and tumor histologic grade

    Evaluation of gene amplification and protein expression of HER-2/neu in esophageal squamous cell carcinoma using Fluorescence in situ Hybridization (FISH) and immunohistochemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Esophageal squamous cell carcinoma (ESCC) is the sixth most frequent neoplasia in Brazil. It is usually associated with a poor prognosis because it is often at an advanced stage when diagnosed and there is a high frequency of lymph node metastases. It is important to know what prognostic factors can facilitate diagnosis, optimize therapeutic decisions, and improve the survival of these patients. A member of the epidermal growth factor receptor (EGFR) family, c-erbB-2, has received much attention because of its therapeutic implications; however, few studies involving fluorescence <it>in situ </it>hybridization (FISH) analysis of HER-2/neu gene amplification and protein expression in ESCC have been conducted. The aim of this study was to verify the presence of HER-2/neu gene amplification using FISH, and to correlate the results with immunohistochemical expression and clinical-pathological findings.</p> <p>Methods</p> <p>One hundred and ninety-nine ESCC cases were evaluated using the Tissue Microarray (TMA) technique. A polyclonal antibody against c-erbB-2 was used for immunohistochemistry. Analyses were based on the membrane staining pattern. The results were classified according to the Herceptest criteria (DAKO): negative (0/1+), potential positive (2+) and positive (3+). The FISH reactions were performed according to the FISH HER2 PharmDx (DAKO) protocol. In each case, 100 tumor nuclei were evaluated. Cases showing a gene/CEN17 fluorescence ratio ≥ 2 were considered positive for gene amplification.</p> <p>Results</p> <p>The c-erbB-2 expression was negative in 117/185 cases (63.2%) and positive in 68 (36.8%), of which 56 (30.3%) were 2+ and 12 (6.5%) were 3+. No significant associations were found among protein expression, clinicopathological data and overall survival. Among the 47 cases analyzed, 38 (80.9%) showed no gene amplification while 9 (19.1%) showed amplification, as demonstrated by FISH. Cases that were negative (0/1+) and potential positive (2+) for c-erbB-2 expression by immunohistochemistry showed no gene amplification. However, all cases with gene amplification were positive (3+) by immunohistochemistry. According to univariate analysis, there was a significant difference (p = 0.003) in survival rates when cases with and without HER-2/neu amplification were compared.</p> <p>Conclusion</p> <p>Our data demonstrate the correspondence between gene amplification and protein expression of HER-2/neu. Gene amplification is an indicator of poor prognosis in ESCC.</p

    Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease

    Get PDF
    HER-2 overexpression, a predictive marker of tumour aggressiveness and responsiveness to therapy, occurs in 20–30% of breast cancer. Although breast cancer is a heterogeneous disease, HER-2 measurement is carried out in primary tumour. This study aims to evaluate HER-2 overexpression in primary and metastases and its effect on treatment decisions. Biopsies from primary breast cancer and corresponding metastases from 58 patients were studied. HER-2 overexpression was evaluated immunohistochemically in all primary and metastatic sites. Positive overexpression in primary and/or metastases was confirmed by fluorescence in situ hybridisation (FISH). Discordance in HER-2 overexpression between primary and metastatic sites was 14% (eight of 58 patients). Concordance was found in 50 (86%) of patients (95% CI: 77–95). In one patient (2%), HER-2 was negative in metastasis but positive in primary. In seven (12%) patients, HER-2 was positive in metastases and negative in primary (95% CI: 3.7–20), and three of them responded to trastuzumab. Gene amplification by FISH was found in all cases with HER-2 positive (+2 and +3) by immunohistochemistry. Our data suggest that a possible discordance of HER-2 overexpression between primary and metastases should be considered when making treatment decisions in patients with primary HER-2-negative tumours

    Estrogen Receptor Silencing Induces Epithelial to Mesenchymal Transition in Human Breast Cancer Cells

    Get PDF
    We propose the hypothesis that loss of estrogen receptor function which leads to endocrine resistance in breast cancer, also results in trans-differentiation from an epithelial to a mesenchymal phenotype that is responsible for increased aggressiveness and metastatic propensity. siRNA mediated silencing of the estrogen receptor in MCF7 breast cancer cells resulted in estrogen/tamoxifen resistant cells (pII) with altered morphology, increased motility with rearrangement and switch from a keratin/actin to a vimentin based cytoskeleton, and ability to invade simulated components of the extracellular matrix. Phenotypic profiling using an Affymetrix Human Genome U133 plus 2.0 GeneChip indicated geometric fold changes ≥3 in approximately 2500 identifiable unique sequences, with about 1270 of these being up-regulated in pII cells. Changes were associated with genes whose products are involved in cell motility, loss of cellular adhesion and interaction with the extracellular matrix. Selective analysis of the data also showed a shift from luminal to basal cell markers and increased expression of a wide spectrum of genes normally associated with mesenchymal characteristics, with consequent loss of epithelial specific markers. Over-expression of several peptide growth factors and their receptors are indicative of an increased contribution to the higher proliferative rates of pII cells as well as aiding their potential for metastatic activity. Signalling molecules that have been identified as key transcriptional drivers of epithelial to mesenchymal transition were also found to be elevated in pII cells. These data support our hypothesis that induced loss of estrogen receptor in previously estrogen/antiestrogen sensitive cells is a trigger for the concomitant loss of endocrine dependence and onset of a series of possibly parallel events that changes the cell from an epithelial to a mesenchymal type. Inhibition of this transition through targeting of specific mediators may offer a useful supplementary strategy to circumvent the effects of loss of endocrine sensitivity

    Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer

    Get PDF
    BACKGROUND: The efficacy of screening for colorectal cancer using a simple blood-based assay for the detection of tumor cells disseminated in the circulation at an early stage of the disease is gaining positive feedback from several lines of research. This method seems able to reduce colorectal cancer mortality and may replace colonoscopy as the most effective means of detecting colonic lesions. METHODS: In this work, we present a new microarray-based high-throughput screening method to identifying candidate marker mRNAs for the early detection of epithelial cells diluted in peripheral blood cells. This method includes 1. direct comparison of different samples of colonic mucosa and of blood cells to identify consistent epithelial-specific mRNAs from among 20,000 cDNA assayed by microarray slides; 2. identification of candidate marker mRNAs by data analysis, which allowed selection of only 10 putative differentially expressed genes; 3. Selection of some of the most suitable mRNAs (TMEM69, RANBP3 and PRSS22) that were assayed in blood samples from normal subjects and patients with colon cancer as possible markers for the presence of epithelial cells in the blood, using reverse transcription – polymerase chain reaction (RT-PCR). RESULTS: Our present results seem to provide an indication, for the first time obtained by genome-scale screening, that a suitable and consistent colon epithelium mRNA marker may be difficult to identify. CONCLUSION: The design of new approaches to identify such markers is warranted

    Effects of tryptophan depletion and tryptophan loading on the affective response to high-dose CO2 challenge in healthy volunteers

    Get PDF
    It has been reported that in panic disorder (PD), tryptophan depletion enhances the vulnerability to experimentally induced panic, while the administration of serotonin precursors blunts the response to challenges. Using a high-dose carbon dioxide (CO2) challenge, we aimed to investigate the effects of acute tryptophan depletion (ATD) and acute tryptophan loading (ATL) on CO2-induced panic response in healthy volunteers. Eighteen healthy volunteers participated in a randomized, double-blind placebo-controlled study. Each subject received ATD, ATL, and a balanced condition (BAL) in separate days, and a double-breath 35% CO2 inhalation 4.5 h after treatment. Tryptophan (Trp) manipulations were obtained adding 0 g (ATD), 1.21 g (BAL), and 5.15 g (ATL) of l-tryptophan to a protein mixture lacking Trp. Assessments consisted of a visual analogue scale for affect (VAAS) and panic symptom list. A separate analysis on a sample of 55 subjects with a separate-group design has also been performed to study the relationship between plasma amino acid levels and subjective response to CO2. CO2-induced subjective distress and breathlessness were significantly lower after ATD compared to BAL and ATL (p &lt;0.05). In the separate-group analysis, Delta VAAS scores were positively correlated to the ratio Trp:I LNAA pound after treatment (r = 0.39; p &lt;0.05). The present results are in line with preclinical data indicating a role for the serotonergic system in promoting the aversive respiratory sensations to hypercapnic stimuli (Richerson, Nat Rev Neurosci 5(6):449-461, 2004). The differences observed in our study, compared to previous findings in PD patients, might depend on an altered serotonergic modulatory function in patients compared to healthy subjects
    • …
    corecore