82 research outputs found

    Two Cases of Pachydermodactyly Presenting as Polyarthritis

    Get PDF
    Pachydermodactyly is characterized by asymptomatic, progressive swelling of the lateral aspects of the 2nd to 4th finger along the proximal interphalangeal (PIP) joint without involving the joint itself. We present 2 interesting cases of patients with periarticular swelling who were initially diagnosed and treated as juvenile idiopathic arthritis (JIA) with subsequent clinical and pathology confirmation of pachydermodactyly. These cases emphasize the importance of considering pachydermodactyly in young patients with development of periarticular swelling and no joint involvement

    Feasibility and safety of a 6-month exercise program to increase bone and muscle strength in children with juvenile idiopathic arthritis

    Get PDF
    Background: Arthritis in childhood can be associated with muscle weakness around affected joints, low bone mass and low bone strength. Exercise is recognized as an important part of management of children with juvenile idiopathic arthritis (JIA) but the exercise prescription to best promote bone and muscle health is unknown. We therefore aimed to: 1. assess feasibility and safety of a 6-month home- and group-based exercise program for children with JIA; 2. estimate the effect of program participation on bone mass and strength, muscle function and clinical outcomes and 3. determine if any positive changes in bone and muscle outcomes are maintained 6 months later. Methods: We recruited 24 children with JIA who were part of the Linking Exercise, Physical Activity and Pathophysiology in Childhood Arthritis (LEAP) study to participate in a 6-month home-based exercise program involving jumping and handgrip exercises, resistance training and one group exercise session per month. We assessed lumbar spine bone mass (dual energy X-ray absorptiometry), distal tibia and radius bone microarchitecture and strength (high-resolution peripheral quantitative computed tomography), muscle function (jumping mechanography, dynamometry) and clinical outcomes (joint assessment, function, health-related quality of life) at baseline, 6- and 12-months. Adherence was assessed using weekly activity logs. Results: Thirteen children completed the 6-month intervention. Participants reported 9 adverse events and post-exercise pain was rare (0.4%). Fatigue improved, but there were no other sustained improvements in muscle, bone or clinical outcomes. Adherence to the exercise program was low (47%) and decreased over time. Conclusion: Children with JIA safely participated in a home-based exercise program designed to enhance muscle and bone strength. Fatigue improved, which may in turn facilitate physical activity participation. Prescribed exercise posed adherence challenges and efforts are needed to address facilitators and barriers to participation in and adherence to exercise programs among children with JIA. Trial registration: Data of the children with JIA are from the LEAP study (Canadian Institutes of Health Research (CIHR; GRANT# 107535). http://www.leapjia.com/

    Predicting which children with juvenile idiopathic arthritis will not attain early remission with conventional treatment: Results from the Reacch-out cohort

    Get PDF
    Objective. To estimate the probability of early remission with conventional treatment for each child with juvenile idiopathic arthritis (JIA). Children with a low chance of remission may be candidates for initial treatment with biologics or triple disease-modifying antirheumatic drugs (DMARD). Methods. We used data from 1074 subjects in the Research in Arthritis in Canadian Children emphasizing Outcomes (ReACCh-Out) cohort. The predicted outcome was clinically inactive disease for ≄ 6 months starting within 1 year of JIA diagnosis in patients who did not receive early biologic agents or triple DMARD. Models were developed in 200 random splits of 75% of the cohort and tested on the remaining 25% of subjects, calculating expected and observed frequencies of remission and c-index values. Results. Our best Cox logistic model combining 18 clinical variables a median of 2 days after diagnosis had a c-index of 0.69 (95% CI 0.67-0.71), better than using JIA category alone (0.59, 95% CI 0.56-0.63). Children in the lowest probability decile had a 20% chance of remission and 21% attained remission; children in the highest decile had a 69% chance of remission and 73% attained remission. Compared to 5% of subjects identified by JIA category alone, the model identified 14% of subjects as low chance of remission (probability \u3c 0.25), of whom 77% failed to attain remission. Conclusion. Although the model did not meet our a priori performance threshold (c-index \u3e 0.70), it identified 3 times more subjects with low chance of remission than did JIA category alone, and it may serve as a benchmark for assessing value added by future laboratory/imaging biomarkers

    The risk and nature of flares in juvenile idiopathic arthritis: Results from the ReACCh-Out cohort

    Get PDF
    Objective To describe probabilities and characteristics of disease flares in children with juvenile idiopathic arthritis ( JIA) and to identify clinical features associated with an increased risk of flare. Methods We studied children in the Research in Arthritis in Canadian Children emphasizing Outcomes (ReACCh-Out) prospective inception cohort. A flare was defined as a recurrence of disease manifestations after attaining inactive disease and was called significant if it required intensification of treatment. Probability of first flare was calculated with Kaplan-Meier methods, and associated features were identified using Cox regression. Results 1146 children were followed up a median of 24 months after attaining inactive disease. We observed 627 first flares (54.7% of patients) with median active joint count of 1, physician global assessment (PGA) of 12 mm and duration of 27 weeks. Within a year after attaining inactive disease, the probability of flare was 42.5% (95% CI 39% to 46%) for any flare and 26.6% (24% to 30%) for a significant flare. Within a year after stopping treatment, it was 31.7% (28% to 36%) and 25.0% (21% to 29%), respectively. A maximum PGA \u3e30 mm, maximum active joint count \u3e4, rheumatoid factor (RF)-positive polyarthritis, antinuclear antibodies (ANA) and receiving disease-modifying antirheumatic drugs (DMARDs) or biological agents before attaining inactive disease were associated with increased risk of flare. Systemic JIA was associated with the lowest risk of flare. Conclusions In this real-practice JIA cohort, flares were frequent, usually involved a few swollen joints for an average of 6 months and 60% led to treatment intensification. Children with a severe disease course had an increased risk of flare

    The Interactive Effect of Tonic Pain and Motor Learning on Corticospinal Excitability

    No full text
    Prior work showed differential alterations in early somatosensory evoked potentials (SEPs) and improved motor learning while in acute tonic pain. The aim of the current study was to determine the interactive effect of acute tonic pain and early motor learning on corticospinal excitability as measured by transcranial magnetic stimulation (TMS). Two groups of twelve participants (n = 24) were randomly assigned to a control (inert lotion) or capsaicin (capsaicin cream) group. TMS input–output (IO) curves were performed at baseline, post-application, and following motor learning acquisition. Following the application of the creams, participants in both groups completed a motor tracing task (pre-test and an acquisition test) followed by a retention test (completed without capsaicin) within 24–48 h. Following an acquisition phase, there was a significant increase in the slope of the TMS IO curves for the control group (p < 0.05), and no significant change for the capsaicin group (p = 0.57). Both groups improved in accuracy following an acquisition phase (p < 0.001). The capsaicin group outperformed the control group at pre-test (p < 0.005), following an acquisition phase (p < 0.005), and following a retention test (p < 0.005). When data was normalized to the pre-test values, the learning effects were similar for both groups post-acquisition and at retention (p < 0.005), with no interactive effect of group. The acute tonic pain in this study was shown to negate the increase in IO slope observed for the control group despite the fact that motor performance improved similarly to the control group following acquisition and retention. This study highlights the need to better understand the implications of neural changes accompanying early motor learning, particularly while in pain

    Does Location of Tonic Pain Differentially Impact Motor Learning and Sensorimotor Integration?

    No full text
    Recent work found that experimental pain appeared to negate alterations in cortical somatosensory evoked potentials (SEPs) that occurred in response to motor learning acquisition of a novel tracing task. The goal of this experiment was to further investigate the interactive effects of pain stimulus location on motor learning acquisition, retention, and sensorimotor processing. Three groups of twelve participants (n = 36) were randomly assigned to either a local capsaicin group, remote capsaicin group or contralateral capsaicin group. SEPs were collected at baseline, post-application of capsaicin cream, and following a motor learning task. Participants performed a motor tracing acquisition task followed by a pain-free retention task 24–48 h later while accuracy data was recorded. The P25 (p < 0.001) SEP peak significantly decreased following capsaicin application for all groups. Following motor learning acquisition, the N18 SEP peak decreased for the remote capsaicin group (p = 0.02) while the N30 (p = 0.002) SEP peaks increased significantly following motor learning acquisition for all groups. The local, remote and contralateral capsaicin groups improved in accuracy following motor learning (p < 0.001) with no significant differences between the groups. Early SEP alterations are markers of the neuroplasticity that accompanies acute pain and motor learning acquisition. Improved motor learning while in acute pain may be due to an increase in arousal, as opposed to increased attention to the limb performing the task

    Interactive effect of acute pain and motor learning acquisition on sensorimotor integration and motor learning outcomes

    Full text link
    Previous work has demonstrated differential changes in early somatosensory evoked potentials (SEPs) when motor learning acquisition occurred in the presence of acute pain; however, the learning task was insufficiently complex to determine how these underlying neurophysiological differences impacted learning acquisition and retention. To address this limitation, we have utilized a complex motor task in conjunction with SEPs. Two groups of 12 participants (n = 24) were randomly assigned to either a capsaicin (capsaicin cream) or a control (inert lotion) group. SEP amplitudes were collected at baseline, after application, and after motor learning acquisition. Participants performed a motor acquisition task followed by a pain-free retention task within 24–48 h. After motor learning acquisition, the amplitude of the N20 SEP peak significantly increased (P < 0.05) and the N24 SEP peak significantly decreased (P < 0.001) for the control group while the N18 SEP peak significantly decreased (P < 0.01) for the capsaicin group. The N30 SEP peak was significantly increased (P < 0.001) after motor learning acquisition for both groups. The P25 SEP peak decreased significantly (P < 0.05) after the application of capsaicin cream. Both groups improved in accuracy after motor learning acquisition (P < 0.001). The capsaicin group outperformed the control group before motor learning acquisition (P < 0.05) and after motor learning acquisition (P < 0.05) and approached significance at retention (P = 0.06). Improved motor learning in the presence of capsaicin provides support for the enhancement of motor learning while in acute pain. In addition, the changes in SEP peak amplitudes suggest that early SEP changes reflect neurophysiological alterations accompanying both motor learning and mild acute pain
    • 

    corecore