89 research outputs found
Chaotic mixing induced transitions in reaction-diffusion systems
We study the evolution of a localized perturbation in a chemical system with
multiple homogeneous steady states, in the presence of stirring by a fluid
flow. Two distinct regimes are found as the rate of stirring is varied relative
to the rate of the chemical reaction. When the stirring is fast localized
perturbations decay towards a spatially homogeneous state. When the stirring is
slow (or fast reaction) localized perturbations propagate by advection in form
of a filament with a roughly constant width and exponentially increasing
length. The width of the filament depends on the stirring rate and reaction
rate but is independent of the initial perturbation. We investigate this
problem numerically in both closed and open flow systems and explain the
results using a one-dimensional "mean-strain" model for the transverse profile
of the filament that captures the interplay between the propagation of the
reaction-diffusion front and the stretching due to chaotic advection.Comment: to appear in Chaos, special issue on Chaotic Flo
Reaction front propagation in a turbulent flow
The propagation of reaction fronts was studied by direct numerical simulations. The velocity field was obtained by integrating the Navier-Stokes equation. The structure of the reaction front and the enhancement of the front propagation speed were investigated. The ratio of eddy turnover times and of the characteristic chemical time scale was determined
Type Ia Supernova Explosion Models
Because calibrated light curves of Type Ia supernovae have become a major
tool to determine the local expansion rate of the Universe and also its
geometrical structure, considerable attention has been given to models of these
events over the past couple of years. There are good reasons to believe that
perhaps most Type Ia supernovae are the explosions of white dwarfs that have
approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by
thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such
accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent
progress in modeling Type Ia supernovae as well as several of the still open
questions are addressed in this review. Although the main emphasis will be on
studies of the explosion mechanism itself and on the related physical
processes, including the physics of turbulent nuclear combustion in degenerate
stars, we also discuss observational constraints.Comment: 38 pages, 4 figures, Annual Review of Astronomy and Astrophysics, in
pres
Combustion in thermonuclear supernova explosions
Type Ia supernovae are associated with thermonuclear explosions of white
dwarf stars. Combustion processes convert material in nuclear reactions and
release the energy required to explode the stars. At the same time, they
produce the radioactive species that power radiation and give rise to the
formation of the observables. Therefore, the physical mechanism of the
combustion processes, as reviewed here, is the key to understand these
astrophysical events. Theory establishes two distinct modes of propagation for
combustion fronts: subsonic deflagrations and supersonic detonations. Both are
assumed to play an important role in thermonuclear supernovae. The physical
nature and theoretical models of deflagrations and detonations are discussed
together with numerical implementations. A particular challenge arises due to
the wide range of spatial scales involved in these phenomena. Neither the
combustion waves nor their interaction with fluid flow and instabilities can be
directly resolved in simulations. Substantial modeling effort is required to
consistently capture such effects and the corresponding techniques are
discussed in detail. They form the basis of modern multidimensional
hydrodynamical simulations of thermonuclear supernova explosions. The problem
of deflagration-to-detonation transitions in thermonuclear supernova explosions
is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 24 pages, 4 figure
Models for Type Ia supernovae and related astrophysical transients
We give an overview of recent efforts to model Type Ia supernovae and related
astrophysical transients resulting from thermonuclear explosions in white
dwarfs. In particular we point out the challenges resulting from the
multi-physics multi-scale nature of the problem and discuss possible numerical
approaches to meet them in hydrodynamical explosion simulations and radiative
transfer modeling. We give examples of how these methods are applied to several
explosion scenarios that have been proposed to explain distinct subsets or, in
some cases, the majority of the observed events. In case we comment on some of
the successes and shortcoming of these scenarios and highlight important
outstanding issues.Comment: 20 pages, 2 figures, review published in Space Science Reviews as
part of the topical collection on supernovae, replacement corrects typos in
the conclusions sectio
- …