429 research outputs found
Density hardening plasticity and mechanical aging of silica glass under pressure: A Raman spectroscopic study
In addition of a flow, plastic deformation of structural glasses (in
particular amorphous silica) is characterized by a permanent densification.
Raman spectroscopic estimators are shown to give a full account of the plastic
behavior of silica under pressure. While the permanent densification of silica
has been widely discussed in terms of amorphous-amorphous transition, from a
plasticity point of view, the evolution of the residual densification with the
maximum pressure of a pressure cycle can be discussed as a density hardening
phenomenon. In the framework of such a mechanical aging effect, we propose that
the glass structure could be labelled by the maximum pressure experienced by
the glass and that the saturation of densification could be associated with the
densest packing of tetrahedra only linked by their vertices
Evolution of the most recent common ancestor of a population with no selection
We consider the evolution of a population of fixed size with no selection.
The number of generations to reach the first common ancestor evolves in
time. This evolution can be described by a simple Markov process which allows
one to calculate several characteristics of the time dependence of . We also
study how is correlated to the genetic diversity.Comment: 21 pages, 10 figures, uses RevTex4 and feynmf.sty Corrections :
introduction and conclusion rewritten, references adde
Sustaining a new model of acute stroke care : A mixed-method process evaluation of the Melbourne Mobile Stroke Unit
Background
Internationally, Mobile Stroke Unit (MSU) ambulances have changed pre-hospital acute stroke care delivery. MSU clinical and cost-effectiveness studies are emerging, but little is known about important factors for achieving sustainability of this innovative model of care.
Methods
Mixed-methods study from the Melbourne MSU (operational since November 2017) process evaluation. Participant purposive sampling included clinical, operational and executive/management representatives from Ambulance Victoria (AV) (emergency medical service provider), the MSU clinical team, and receiving hospitals. Sustainability was defined as ongoing MSU operations, including MSU workforce and future model considerations. Theoretically-based on-line survey with Unified Theory of Acceptance and Use of Technology (UTAUT), Self Determination Theory (SDT, Intrinsic Motivation), and open-text questions targeting barriers and benefits was administered (June-September 2019). Individual/group interviews were conducted, eliciting improvement suggestions and requirements for ongoing use. Descriptive and regression analyses (quantitative data) and directed content and thematic analysis (open text and interview data) were conducted.
Results
There were 135 surveys completed. Identifying that the MSU was beneficial to daily work (ÎČ = 0.61), not experiencing pressure/tension about working on the MSU (ÎČ = 0.17) and thinking they did well working within the team model (ÎČ = 0.17) were significantly associated with wanting to continue working within the MSU model [R2 = 0.76; F(15, 60) = 12.76, P < .001]. Experiences varied between those on the MSU team and those working with the MSU. Advantages were identified for patients (better, faster care) and clinicians (interdisciplinary learning). Disadvantages included challenges integrating into established systems, and establishing working relationships. Themes identified from 35 interviews were MSU team composition, MSU vehicle design and layout, personnel recruitment and rostering, communication improvements between organisations, telemedicine options, MSU operations and dispatch specificity.
Conclusion
Important factors affecting the sustainability of the MSU model of stroke care emerged. A cohesive team approach, with identifiable benefits and good communication between participating organisations is important for clinical and operational sustainability
Hybrid modeling of biological networks: mixing temporal and qualitative biological properties
<p>Abstract</p> <p>Background</p> <p>Modeling a dynamical biological system is often a difficult task since the a <it>priori </it>unknown parameters of such models are not always directly given by the experiments. Despite the lack of experimental quantitative knowledge, one can see a dynamical biological system as (i) the combined evolution tendencies (increase or decrease) of the biological compound concentrations, and: (ii) the temporal features, such as delays between two concentration peaks (i.e. the times when one of the components completes an increase (resp. decrease) phase and starts a decrease (resp. increase) phase).</p> <p>Results</p> <p>We propose herein a new hybrid modeling framework that follows such biological assumptions. This hybrid approach deals with both a qualitative structure of the system and a quantitative structure. From a theoretical viewpoint, temporal specifications are expressed as equality or inequality constraints between delay parameters, while the qualitative specifications are expressed as an ordered pattern of the concentrations peaks of the components. Using this new hybrid framework, the temporal specifications of a biological system can be obtained from incomplete experimental data. The model may be processed by a hybrid model-checker (e.g. Phaver) which is able to give some new constraints on the delay parameters (e.g. the delay for a given transition is exactly 5 hours after the later peak of a gene product concentration). Furthermore, by using a constraint solver on the previous results, it becomes possible to get the set of parameters settings which are consistent with given specifications. Such a modeling approach is particularly accurate for modeling oscillatory biological behaviors like those observed in the Drosophila circadian cycles. The achieved results concerning the parameters of this oscillatory system formally confirm the several previous studies made by numerical simulations. Moreover, our analysis makes it possible to propose an automatic investigation of the respective impact of per and tim on the circadian cycle.</p> <p>Conclusions</p> <p>A new hybrid technique for an automatic formal analysis of biological systems is developed with a special emphasis on their oscillatory behaviors. It allows the use of incomplete and empirical biological data.</p
A clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and outcome after cardiac arrest
<p>Abstract</p> <p>Background</p> <p>Anoxic coma following cardiac arrest is a common problem with ethical, social, and legal consequences. Except for unfavorable somatosensory-evoked potentials (SSEP) results, predictors of unfavorable outcome with a 100% specificity and a high sensitivity are lacking. The aim of the current research was to construct a clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and 6-months outcome in comatose patients after cardiac arrest.</p> <p>Methods</p> <p>We retrospectively reviewed the records of all consecutive patients who suffered cardiac arrest outside our hospital and were subsequently admitted to our facility from November 2002 to July 2006. We scored each case based on early clinical and EEG factors associated with unfavorable SSEPs, and we assessed the ability of this score to predict SSEP results and outcome.</p> <p>Results</p> <p>Sixty-six patients qualified for inclusion in the cohort. Among them, 34 (52%) had unfavorable SSEP results. At day three, factors independently associated with unfavorable SSEPs were: absence of corneal (14 points) and pupillary (21 points) reflexes, myoclonus (25 points), extensor or absent motor response to painful stimulation (28 points), and malignant EEG (11 points). A score >40 points had a sensitivity of 85%, a specificity of 84%, and a positive predictive value (PPV) of 85% to predict unfavorable SSEP results. A score >88 points had a PPV of 100%, but a sensitivity of 18%. Overall, this score had an area under ROC curves of 0.919. In addition, at day three, a score > 69 points had a PPV of 100% with a sensitivity of 32% to predict death or vegetative state.</p> <p>Conclusion</p> <p>A scoring system based on a combination of clinical and EEG findings can predict the absence of early cortical response to SSEPs. In settings without access to SSEPs, this score may help decision-making in a subset of comatose survivors after a cardiac arrest.</p
Artificial Intelligence, Machine Learning and Modeling for Understanding the Oceans and Climate Change
International audienceThe ongoing transformation of climate and biodiversity will have a drastic impact on almost all forms of life in the ocean with further consequences on food security, ecosystem services in coastal and inland communities. Despite these impacts, scientific data and infrastructures are still lacking to understand and quantify the consequences of these perturbations on the marine ecosystem. Understanding this phenomenon is not only an urgent but also a scientifically demanding task. Consequently, it is a problem that must be addressed with a tific cohort approach, where multi-disciplinary teams collaborate to bring the best of different scientific areas. In this proposal paper, we describe our newly launched four-years project focusedon developing new artificial intelligence, machine learning, and mathematical modeling tools to contribute to the understanding of the structure, functioning, and underlying mechanisms and dynamics of the global ocean symbiome and its relation with climate change. These actions should enable the understanding of our oceans and predict and mitigate the consequences of climate and biodiversity changes
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent
Prognostic Implications of Fractional Flow Reserve After Coronary Stenting:A Systematic Review and Meta-analysis
IMPORTANCE: Fractional flow reserve (FFR) after percutaneous coronary intervention (PCI) is generally considered to reflect residual disease. Yet the clinical relevance of post-PCI FFR after drug-eluting stent (DES) implantation remains unclear. OBJECTIVE: To evaluate the clinical relevance of post-PCI FFR measurement after DES implantation. DATA SOURCES: MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched for relevant published articles from inception to June 18, 2022. STUDY SELECTION: Published articles that reported post-PCI FFR after DES implantation and its association with clinical outcomes were included. DATA EXTRACTION AND SYNTHESIS: Patient-level data were collected from the corresponding authors of 17 cohorts using a standardized spreadsheet. Meta-estimates for primary and secondary outcomes were analyzed per patient and using mixed-effects Cox proportional hazard regression with registry identifiers included as a random effect. All processes followed the Preferred Reporting Items for Systematic Review and Meta-analysis of Individual Participant Data. MAIN OUTCOMES AND MEASURES: The primary outcome was target vessel failure (TVF) at 2 years, a composite of cardiac death, target vessel myocardial infarction (TVMI), and target vessel revascularization (TVR). The secondary outcome was a composite of cardiac death or TVMI at 2 years. RESULTS: Of 2268 articles identified, 29 studies met selection criteria. Of these, 28 articles from 17 cohorts provided data, including a total of 5277 patients with 5869 vessels who underwent FFR measurement after DES implantation. Mean (SD) age was 64.4 (10.1) years and 4141 patients (78.5%) were men. Median (IQR) post-PCI FFR was 0.89 (0.84-0.94) and 690 vessels (11.8%) had a post-PCI FFR of 0.80 or below. The cumulative incidence of TVF was 340 patients (7.2%), with cardiac death or TVMI occurring in 111 patients (2.4%) at 2 years. Lower post-PCI FFR significantly increased the risk of TVF (adjusted hazard ratio [HR] per 0.01 FFR decrease, 1.04; 95% CI, 1.02-1.05; Pâ<â.001). The risk of cardiac death or MI also increased inversely with post-PCI FFR (adjusted HR, 1.03; 95% CI, 1.00-1.07, Pâ=â.049). These associations were consistent regardless of age, sex, the presence of hypertension or diabetes, and clinical diagnosis. CONCLUSIONS AND RELEVANCE: Reduced FFR after DES implantation was common and associated with the risks of TVF and of cardiac death or TVMI. These results indicate the prognostic value of post-PCI physiologic assessment after DES implantation
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
mTor, acting mainly via mTORC1, controls dystrophin transcription in a raptor- and rictor-independent mechanism
- âŠ