82 research outputs found

    Evidence for an X-ray Emitting Galactic Bulge: Shadows Cast by Distant Molecular Gas

    Get PDF
    A mosaic of 7 ROSAT PSPC pointed observations in the direction of (l,b ~ 10,0 deg) reveals deep X-ray shadows in the 0.5-2.0 keV band cast by dense molecular gas. The comparison between the observed on-cloud and off-cloud X-ray fluxes indicates that ~43% of the diffuse X-ray background in this direction in both the 3/4 keV and 1.5 keV bands originates behind the molecular gas, which is located at 2-4 kpc from the Sun. Given the short mean free path of X-rays in the 3/4 keV band in the Galactic plane (~1 kpc assuming an average space density of 1 cm^-3), this large percentage of the observed flux which originates beyond the molecular gas most likely indicates a strong enhancement in the distribution of X-ray emitting gas in the Galactic center region, possibly associated with a Galactic X-ray bulge.Comment: 16 pages LaTex, 2 figures. Accepted for the publication in Astrophysical Journal, Letter

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Full text link
    We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics --their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the inter-arm region and into the next spiral arm passage.Comment: 6 pages, including 3 figures. Accepted, ApJ

    Characterization of immunoglobulin G antibodies to Plasmodium falciparum sporozoite surface antigen MB2 in malaria exposed individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MB2 protein is a sporozoite surface antigen on the human malaria parasite <it>Plasmodium falciparum</it>. MB2 was identified by screening a <it>P. falciparum </it>sporozoite cDNA expression library using immune sera from a protected donor immunized via the bites of <it>P. falciparum</it>-infected irradiated mosquitoes. It is not known whether natural exposure to <it>P. falciparum </it>also induces the anti-MB2 response and if this response differs from that in protected individuals immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes. The anti-MB2 antibody response may be part of a robust protective response against the sporozoite.</p> <p>Methods</p> <p>Fragments of polypeptide regions of MB2 were constructed as recombinant fusions sandwiched between glutathione S-transferase and a hexa histidine tag for bacterial expression. The hexa histidine tag affinity purified proteins were used to immunize rabbits and the polyclonal sera evaluated in an <it>in vitro </it>inhibition of sporozoite invasion assay. The proteins were also used in immunoblots with sera from a limited number of donors immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes and plasma and serum obtained from naturally exposed individuals in Kenya.</p> <p>Results</p> <p>Rabbit polyclonal antibodies targeting the non-repeat region of the basic domain of MB2 inhibited sporozoites entry into HepG2-A16 cells <it>in vitro</it>. Analysis of serum from five human volunteers that were immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes that developed immunity and were completely protected against subsequent challenge with non-irradiated parasite also had detectable levels of antibody against MB2 basic domain. In contrast, in three volunteers not protected, anti-MB2 antibodies were below the level of detection. Sera from protected volunteers preferentially recognized a non-repeat region of the basic domain of MB2, whereas plasma from naturally-infected individuals also had antibodies that recognize regions of MB2 that contain a repeat motif in immunoblots. Sequence analysis of eleven field isolates and four laboratory strains showed that these antigenic regions of the basic domain of the <it>MB2 </it>gene are highly conserved in parasites obtained from different parts of the world. Moreover, anti-MB2 antibodies also were detected in the plasma of 83% of the individuals living in a malaria endemic area of Kenya (n = 41).</p> <p>Conclusion</p> <p>A preliminary analysis of the human humoral response against MB2 indicates that it may be an additional highly conserved target for immune intervention at the pre-erythrocytic stage of <it>P. falciparum </it>life cycle.</p

    Retinoic Acid-Dependent Signaling Pathways and Lineage Events in the Developing Mouse Spinal Cord

    Get PDF
    Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    The NuSTAR

    Full text link

    Development of \u3ci\u3eSarcocystis falcatula\u3c/i\u3e in its intermediate host, the Brown-headed Cowbird (\u3ci\u3eMolothrus ater\u3c/i\u3e)

    Get PDF
    Sporocysts of Sarcocystis falcatula obtained from experimentally infected Virginia opossums (Didelphis virginiana) were inoculated orally to 60 wild-caught Brown-headed Cowbirds (Molothrus ater). Another 30 Brown-headed Cowbirds were not challenged and served as uninfected controls. Two inoculated and one control cowbird were necropsied every 2 weeks and the pectoral and thigh muscles were examined grossly for cyst development. Stained histologic sections of pectoral muscle, thigh muscle, and lung were examined by light microscopy and presence, density, and size of sarcocysts were determined. Sarcocysts were present by 6 weeks post-inoculation (PI) and were still growing at 40 weeks PI. The sarcocysts from birds 40 weeks post-infection were infective to an opossum. The morphology of the sarcocyst wall by transmission electron microscopy substantiated the identification as S. falcatula. Lung sections were examined for the presence of schizonts, but were seen only at 2 weeks PI. This evaluation was complicated by the presence of unidentified microfilariae. These birds are migratory and the continued growth and development of muscle cysts would allow them to be a source of infection at both extremes of their geographic range, regardless of which end of the migration at which they were infected
    corecore