39 research outputs found

    Central Latin America: Two decades of challenges in neglected tropical disease control

    Get PDF
    Since the start of the 21st Century, the CLA region has faced considerable challenges, including prolonged droughts with intermittent and extreme floods due to climate change; violence and political instability linked to the drug trade; political, socioeconomic, and food insecurity from agricultural declines; human displacements; urbanization; and even the marginalization of large indigenous populations [2, 3]. Here, we provide an overview of the findings from the Global Burden of Disease (GBD) Study from the years 2000 and 2017 highlighting the gains or losses in neglected tropical disease (NTD) and malaria disease control in the CLA countries and progress towards the targets of the Global Goals (also known as the Sustainable Development Goals). Furthermore, we provide a perspective of the key physical and social determinants in the CLA region that now and in the future could continue to undermine progress in disease control and elimination efforts

    The role of different microbiota in metastatic brain tumors

    Get PDF
    View full abstracthttps://openworks.mdanderson.org/leading-edge/1005/thumbnail.jp

    The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates

    Get PDF
    BACKGROUND: The intestine of hookworms contains enzymes and proteins involved in the blood-feeding process of the parasite and is therefore a promising source of possible vaccine antigens. One such antigen, the hemoglobin-digesting intestinal aspartic protease known as Na-APR-1 from the human hookworm Necator americanus, is currently a lead candidate antigen in clinical trials, as is Na-GST-1 a heme-detoxifying glutathione S-transferase. METHODS: In order to discover additional hookworm vaccine antigens, messenger RNA was obtained from the intestine of male hookworms, Ancylostoma ceylanicum, maintained in hamsters. RNA-seq was performed using Illumina high-throughput sequencing technology. The genes expressed in the hookworm intestine were compared with those expressed in the whole worm and those genes overexpressed in the parasite intestine transcriptome were further analyzed. RESULTS: Among the lead transcripts identified were genes encoding for proteolytic enzymes including an A. ceylanicum APR-1, but the most common proteases were cysteine-, serine-, and metallo-proteases. Also in abundance were specific transporters of key breakdown metabolites, including amino acids, glucose, lipids, ions and water; detoxifying and heme-binding glutathione S-transferases; a family of cysteine-rich/antigen 5/pathogenesis-related 1 proteins (CAP) previously found in high abundance in parasitic nematodes; C-type lectins; and heat shock proteins. These candidates will be ranked for downstream antigen target selection based on key criteria including abundance, uniqueness in the parasite versus the vertebrate host, as well as solubility and yield of expression. CONCLUSION: The intestinal transcriptome of A. ceylanicum provides useful information for the identification of proteins involved in the blood-feeding process, representing a first step towards a reverse vaccinology approach to a human hookworm vaccine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1795-8) contains supplementary material, which is available to authorized users

    Imaging of Borrelia turicatae Producing the Green Fluorescent Protein Reveals Persistent Colonization of the Ornithodoros turicata Midgut and Salivary Glands from Nymphal Acquisition through Transmission

    Get PDF
    Relapsing fever (RF) spirochetes colonize and are transmitted to mammals primarily by Ornithodoros ticks, and little is known regarding the pathogen's life cycle in the vector. To further understand vector colonization and transmission of RF spirochetes, Borrelia turicatae expressing a green fluorescent protein (GFP) marker (B. turicatae-gfp) was generated. The transformants were evaluated during the tick-mammal infectious cycle, from the third nymphal instar to adult stage. B. turicatae-gfp remained viable for at least 18 months in starved fourth-stage nymphal ticks, and the studies indicated that spirochete populations persistently colonized the tick midgut and salivary glands. Our generation of B. turicatae-gfp also revealed that within the salivary glands, spirochetes are localized in the ducts and lumen of acini, and after tick feeding, the tissues remained populated with spirochetes. The B. turicatae-gfp generated in this study is an important tool to further understand and define the mechanisms of vector colonization and transmission. IMPORTANCE In order to interrupt the infectious cycle of tick-borne relapsing fever spirochetes, it is important to enhance our understanding of vector colonization and transmission. Toward this, we generated a strain of Borrelia turicatae that constitutively produced the green fluorescent protein, and we evaluated fluorescing spirochetes during the entire infectious cycle. We determined that the midgut and salivary glands of Ornithodoros turicata ticks maintain the pathogens throughout the vector's life cycle and remain colonized with the spirochetes for at least 18 months. We also determined that the tick's salivary glands were not depleted after a transmission blood feeding. These findings set the framework to further understand the mechanisms of midgut and salivary gland colonization

    Impact of intestinal parasites on microbiota and cobalamin gene sequences: A pilot study

    Get PDF
    Background: Approximately 30% of children worldwide are infected with gastrointestinal parasites. Depending on the species, parasites can disrupt intestinal bacterial microbiota affecting essential vitamin biosynthesis. Methods: Stool samples were collected from 37 asymptomatic children from a previous cross-sectional Argentinian study. A multi-parallel real-time quantitative PCR was implemented for Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, Cryptosporidium spp., Entamoeba histolytica and Giardia duodenalis. In addition, whole-genome sequencing analysis was conducted for bacterial microbiota on all samples and analyzed using Livermore Metagenomic Analysis Toolkit and DIAMOND software. Separate analyses were carried out for uninfected, Giardia-only, Giardia + helminth co-infections, and helminth-only groups. Results: For Giardia-only infected children compared to uninfected children, DNA sequencing data showed a decrease in microbiota biodiversity that correlated with increasing Giardia burden and was statistically significant using Shannon's alpha diversity (Giardia-only > 1 fg/μl 2.346; non-infected group 3.253, P = 0.0317). An increase in diversity was observed for helminth-only infections with a decrease in diversity for Giardia + helminth co-infections (P = 0.00178). In Giardia-only infections, microbiome taxonomy changed from Firmicutes towards increasing proportions of Prevotella, with the degree of change related to the intensity of infection compared to uninfected (P = 0.0317). The abundance of Prevotella bacteria was decreased in the helminths-only group but increased for Giardia + helminth co-infections (P = 0.0262). Metagenomic analysis determined cobalamin synthesis was decreased in the Giardia > 1 fg/μl group compared to both the Giardia < 1 fg/μl and the uninfected group (P = 0.0369). Giardia + helminth group also had a decrease in cobalamin CbiM genes from helminth-only infections (P = 0.000754). Conclusion: The study results may provide evidence for an effect of parasitic infections enabling the permissive growth of anaerobic bacteria such as Prevotella, suggesting an altered capacity of vitamin B12 (cobalamin) biosynthesis and potential impact on growth and development in children.Fil: Mejia, Rojelio. Baylor College of Medicine; Estados Unidos. Universidad Nacional de Salta; ArgentinaFil: Damania, Ashish. Baylor College of Medicine; Estados UnidosFil: Jeun, Rebecca. Baylor College of Medicine; Estados UnidosFil: Bryan, Patricia E.. Baylor College of Medicine; Estados UnidosFil: Vargas, Paola. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Juarez, Marisa del Valle. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Cajal, Silvana Pamela. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Nasser, Julio Rubén. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; ArgentinaFil: Krolewiecki, Alejandro Javier. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Lefoulon, Emilie. New England Biolabs; Estados UnidosFil: Long, Courtney. New England Biolabs; Estados UnidosFil: Drake, Evan. New England Biolabs; Estados UnidosFil: Cimino, Rubén Oscar. Universidad Nacional de Salta. Sede Regional Orán. Instituto de Investigación de Enfermedades Tropicales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Slatko, Barton. New England Biolabs; Estados Unido

    India's neglected tropical diseases.

    No full text

    Whole genome sequencing of Microbacterium sp. AISO3 from polluted San Jacinto River sediment reveals high bacterial mobility, metabolic versatility and heavy metal resistance

    No full text
    The genus Microbacterium is composed of high GC content, Gram-positive bacteria of the phylum Acintobacteria known for their antibiotic production. Microbacterium species commonly colonize agricultural rhizospheres and more infrequently have been found to colonize and infect human tissues as well. Here we report the 3,696,310 bp draft genome (chromosome and plasmids) sequence assembled at the scaffold level from 232 contigs of Microbacterium sp. strain AISO3, isolated from polluted San Jacinto River sediment in Channelview, Texas. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession NHRF00000000

    Genome of Pseudomonas nitroreducens DF05 from dioxin contaminated sediment downstream of the San Jacinto River waste pits reveals a broad array of aromatic degradation gene determinants

    No full text
    P. nitroreducens DF05 is a Gram negative, motile, aerobic, rod-shaped and psychrotrophic bacterium that was isolated from contaminated San Jacinto River sediment near River Terrace Park in Channelview, Texas. The draft genome of strain DF05 consists of a total of 192 contigs assembled at the scaffold level totaling 6,487,527 bp and encoding for 5862 functional proteins, 1116 of which are annotated as hypothetical proteins. The bacterial chromosome has a GC content of 65.15% and contains 22 rRNA and 70 tRNA loci. In addition, approximately 142 proteins localized on the bacterial chromosome are associated with metabolism of aromatic compounds. A single plasmid approximately 95 kb in size was also detected carrying copies of RNA genes and multiple phage assembly proteins

    Whole genome of Klebsiella aerogenes PX01 isolated from San Jacinto River sediment west of Baytown, Texas reveals the presence of multiple antibiotic resistance determinants and mobile genetic elements

    No full text
    Klebsiella aerogenes is a Gram-negative bacterium of the family Enterobacteriaceae which is widely distributed in water, air and soil. It also forms part of the normal microbiota found in human and animal gastrointestinal tracts. Here we report the draft genome sequence (chromosome and 1 plasmid) of K. aerogenes strain PX01 compiled at the scaffold level from 97 contigs totaling 5,262,952 bp. K. aerogenes PX01 was isolated from sediment along the northern face of Burnet Bay west of Baytown, Texas. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession NJBB00000000
    corecore