2,062 research outputs found
Stellar Oscillations Network Group
Stellar Oscillations Network Group (SONG) is an initiative aimed at designing
and building a network of 1m-class telescopes dedicated to asteroseismology and
planet hunting. SONG will have 8 identical telescope nodes each equipped with a
high-resolution spectrograph and an iodine cell for obtaining precision radial
velocities and a CCD camera for guiding and imaging purposes. The main
asteroseismology targets for the network are the brightest (V<6) stars. In
order to improve performance and reduce maintenance costs the instrumentation
will only have very few modes of operation. In this contribution we describe
the motivations for establishing a network, the basic outline of SONG and the
expected performance.Comment: Proc. Vienna Workshop on the Future of Asteroseismology, 20 - 22
September 2006. Comm. in Asteroseismology, Vol. 150, in the pres
Solar-like oscillations in the G8 V star tau Ceti
We used HARPS to measure oscillations in the low-mass star tau Cet. Although
the data were compromised by instrumental noise, we have been able to extract
the main features of the oscillations. We found tau Cet to oscillate with an
amplitude that is about half that of the Sun, and with a mode lifetime that is
slightly shorter than solar. The large frequency separation is 169 muHz, and we
have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to
estimate the mean density of the star to an accuracy of 0.45% which, combined
with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).Comment: accepted for publication in A&
Damping rates and frequency corrections of Kepler LEGACY stars
Linear damping rates and modal frequency corrections of radial oscillation
modes in selected LEGACY main-sequence stars are estimated by means of a
nonadiabatic stability analysis. The selected stellar sample covers stars
observed by Kepler with a large range of surface temperatures and surface
gravities. A nonlocal, time-dependent convection model is perturbed to assess
stability against pulsation modes. The mixing-length parameter is calibrated to
the surface-convection-zone depth of a stellar model obtained from fitting
adiabatic frequencies to the LEGACY observations, and two of the nonlocal
convection parameters are calibrated to the corresponding LEGACY linewidth
measurements. The remaining nonlocal convection parameters in the 1D
calculations are calibrated so as to reproduce profiles of turbulent pressure
and of the anisotropy of the turbulent velocity field of corresponding 3D
hydrodynamical simulations. The atmospheric structure in the 1D stability
analysis adopts a temperature-optical-depth relation derived from 3D
hydrodynamical simulations. Despite the small number of parameters to adjust,
we find good agreement with detailed shapes of both turbulent pressure profiles
and anisotropy profiles with depth, and with damping rates as a function of
frequency. Furthermore, we find the absolute modal frequency corrections,
relative to a standard adiabatic pulsation calculation, to increase with
surface temperature and surface gravity.Comment: accepted for publication in Monthly Notices of the Royal Astronomical
Society (MNRAS); 15 pages, 8 figure
A Stellar Model-fitting Pipeline for Solar-like Oscillations
Over the past two decades, helioseismology has revolutionized our
understanding of the interior structure and dynamics of the Sun.
Asteroseismology will soon place this knowledge into a broader context by
providing structural data for hundreds of Sun-like stars. Solar-like
oscillations have already been detected from the ground in several stars, and
NASA's Kepler mission is poised to unleash a flood of stellar pulsation data.
Deriving reliable asteroseismic information from these observations demands a
significant improvement in our analysis methods. We report the initial results
of our efforts to develop an objective stellar model-fitting pipeline for
asteroseismic data. The cornerstone of our automated approach is an
optimization method using a parallel genetic algorithm. We describe the details
of the pipeline and we present the initial application to Sun-as-a-star data,
yielding an optimal model that accurately reproduces the known solar
properties.Comment: 5 pages, 2 figs, Stellar Pulsation: Challenges for Theory and
Observation (proceedings to be published by AIP
On detecting the large separation in the autocorrelation of stellar oscillation times series
The observations carried out by the space missions CoRoT and Kepler provide a
large set of asteroseismic data. Their analysis requires an efficient procedure
first to determine if the star is reliably showing solar-like oscillations,
second to measure the so-called large separation, third to estimate the
asteroseismic information that can be retrieved from the Fourier spectrum. We
develop in this paper a procedure, based on the autocorrelation of the seismic
Fourier spectrum. We have searched for criteria able to predict the output that
one can expect from the analysis by autocorrelation of a seismic time series.
First, the autocorrelation is properly scaled for taking into account the
contribution of white noise. Then, we use the null hypothesis H0 test to assess
the reliability of the autocorrelation analysis. Calculations based on solar
and CoRoT times series are performed in order to quantify the performance as a
function of the amplitude of the autocorrelation signal. We propose an
automated determination of the large separation, whose reliability is
quantified by the H0 test. We apply this method to analyze a large set of red
giants observed by CoRoT. We estimate the expected performance for photometric
time series of the Kepler mission. Finally, we demonstrate that the method
makes it possible to distinguish l=0 from l=1 modes. The envelope
autocorrelation function has proven to be very powerful for the determination
of the large separation in noisy asteroseismic data, since it enables us to
quantify the precision of the performance of different measurements: mean large
separation, variation of the large separation with frequency, small separation
and degree identification.Comment: A&A, in pres
Escherichia coli contamination and health aspects of soil and tomatoes (Solanum lycopersicum L.) subsurface drip irrigated with on-site treated domestic wastewater.
Faecal contamination of soil and tomatoes irrigated by sprinkler as well as surface and subsurface drip irrigation with treated domestic wastewater were compared in 2007 and 2008 at experimental sites in Crete and Italy. Wastewater was treated by Membrane Bio Reactor (MBR) technology, gravel filtration or UV-treatment before used for irrigation. Irrigation water, soil and tomato samples were collected during two cropping seasons and enumerated for the faecal indicator bacterium Escherichia coli and helminth eggs. The study found elevated levels of E. coli in irrigation water (mean: Italy 1753 cell forming unit (cfu) per 100 ml and Crete 488 cfu per 100 ml) and low concentrations of E. coli in soil (mean: Italy 95 cfu g(-1) and Crete 33 cfu g(-1)). Only two out of 84 tomato samples in Crete contained E. coli (mean: 2700 cfu g(-1)) while tomatoes from Italy were free of E. coli. No helminth eggs were found in the irrigation water or on the tomatoes from Crete. Two tomato samples out of 36 from Italy were contaminated by helminth eggs (mean: 0.18 eggs g(-1)) and had been irrigated with treated wastewater and tap water, respectively. Pulsed Field Gel Electrophoresis DNA fingerprints of E. coli collected during 2008 showed no identical pattern between water and soil isolates which indicates contribution from other environmental sources with E. coli, e.g. wildlife. A quantitative microbial risk assessment (QMRA) model with Monte Carlo simulations adopted by the World Health Organization (WHO) found the use of tap water and treated wastewater to be associated with risks that exceed permissible limits as proposed by the WHO (1.0 × 10(-3) disease risk per person per year) for the accidental ingestion of irrigated soil by farmers (Crete: 0.67 pppy and Italy: 1.0 pppy). The QMRA found that the consumption of tomatoes in Italy was deemed to be safe while permissible limits were exceeded in Crete (1.0 pppy). Overall the quality of tomatoes was safe for human consumption since the disease risk found on Crete was based on only two contaminated tomato samples. It is a fundamental limitation of the WHO QMRA model that it is not based on actual pathogen numbers, but rather on numbers of E. coli converted to estimated pathogen numbers, since it is widely accepted that there is poor correlation between E. coli and viral and parasite pathogens. Our findings also stress the importance of the external environment, typically wildlife, as sources of faecal contamination
- …