58 research outputs found
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Strong reduction of the off-momentum halo in crystal assisted collimation of the SPS beam
A study of crystal assisted collimation has been continued at the CERN SPS for different energies of stored beams using 120 GeV/. c and 270 GeV/. c protons and Pb ions with 270 GeV/. c per charge. A bent silicon crystal used as a primary collimator deflected halo particles using channeling and directing them into the tungsten absorber. A strong correlation of the beam losses in the crystal and off-momentum halo intensity measured in the first high dispersion (HD) area downstream was observed. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with nuclei is significantly reduced in comparison with the non-oriented crystal. A maximal reduction of beam losses in the crystal larger than 20 was observed with 270 GeV/. c protons. The off-momentum halo intensity measured in the HD area was also strongly reduced in channeling conditions. The reduction coefficient was larger than 7 for the case of Pb ions. A strong loss reduction was also detected in regions of the SPS ring far from the collimation area. It was shown by simulations that the miscut angle between the crystal surface and its crystallographic planes doubled the beam losses in the aligned crystal.peer-reviewe
Comparative results on collimation of the SPS beam of protons and Pb ions with bent crystals
New experiments on crystal assisted collimation have been carried out at the CERN SPS with stored beams of 120 GeV/. c protons and Pb ions. Bent silicon crystals of 2 mm long with about 170 μrad bend angle and a small residual torsion were used as primary collimators. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with the crystal nuclei is minimal. The loss reduction was about 6 for protons and about 3 for Pb ions. Lower reduction value for Pb ions can be explained by their considerably larger ionization losses in the crystal. In one of the crystals, the measured fraction of the Pb ion beam halo deflected in channeling conditions was 74%, a value very close to that for protons. The intensity of the off-momentum halo leaking out from the collimation station was measured in the first high dispersion area downstream. The particle population in the shadow of the secondary collimator-absorber was considerably smaller in channeling conditions than for amorphous orientations of the crystal. The corresponding reduction was in the range of 2-5 for both protons and Pb ions.peer-reviewe
Observation of parametric X-rays produced by 400 GeV/c protons in bent crystals
Spectral maxima of parametric X-ray radiation (PXR) produced by 400 GeV/c protons in bent silicon crystals aligned with the beam have been observed in an experiment at the H8 external beam of the CERN SPS. The total yield of PXR photons was about 10-6 per proton. Agreement between calculations and the experimental data shows that the PXR kinematic theory is valid for bent crystals with sufficiently small curvature as used in the experiment. The intensity of PXR emitted from halo protons in a bent crystal used as a primary collimator in a circular accelerator may be considered as a possible tool to control its crystal structure, which is slowly damaged because of irradiation. The intensity distribution of PXR peaks depends on the crystal thickness intersected by the beam, which changes for different orientations of a crystal collimator. This dependence may be used to control crystal collimator alignment by analyzing PXR spectra produced by halo protons.peer-reviewe
Direct search for light gluinos
We present the results for a direct search for light gluinos through the appearance of with high transverse momentum in the vacuum tank of the NA48 experiment at CERN. We find one event within a lifetime range of s and another one between s. Both events are consistent with the expected background from neutrons in the beam, produced by 450 GeV protons impinging on the Be targets, which interact with the residual air in the tank. From these data we give limits on the production of the hypothetical bound state, the hadron, and its decay in the mass range between 1 and 5~GeV
Study of doubly strange systems using stored antiprotons
Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions
- …