37 research outputs found

    In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination

    Get PDF
    A 785 nm diode laser and probe with a 6 mm spot size were used to obtain spectra of stationary powders and powders mixing at 50 rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO2 in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7 mm for the "information" depth and 3.5 mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin-aspartame-Avicel mixture

    Effect of particle properties of powders on the generation and transmission of raman scattering

    Get PDF
    Transmission Raman measurements of a 1 mm thick sulfur-containing disk were made at different positions as it was moved through 4 mm of aspirin (150-212 mu m) or microcrystalline cellulose (Avicel) of different size ranges (<38, 53-106, and 150-212 mu m). The transmission Raman intensity of the sulfur interlayer at 218 cm(-1) was lower when the disk was placed at the top or bottom of the powder bed, compared to positions within the bed and the difference between the sulfur intensity at the outer and inner positions increased with Avicel particle size. Also, the positional intensity difference was smaller for needle-shaped aspirin than for granular Avicel of the same size. The attenuation coefficients for the propagation of the exciting laser and transmitted Raman photons through the individual powders were the same but decreased as the particle size of Avicel increased; also, the attenuation coefficients for propagation through 150-212 mu m aspirin were almost half of those through similar sized Avicel particles. The study has demonstrated that particulate size and type affect transmitted Raman intensities and, consequently, such factors need to be considered in the analysis of powders, especially if particle properties vary between the samples

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY95-14795Charles S. Draper Laboratory Contract DL-H-484775U.S. Army Research Office Contract DAAH04-94-G-0170U.S. Army Research Office Contract DAAH04-95-1-0533U.S. Navy - Office of Naval Research Contract N00014-89-J-1207U.S. Navy - Office of Naval Research Contract N000014-96-1-0432David and Lucile Packard Foundation Grant 96-5158National Science Foundation Grant PHY95-01984U.S. Army - Office of ResearchU.S. Navy - Office of Naval Research Contract N00014-96-1-0485U.S. Navy - Office of Naval Research AASERT N00014-94-1-080

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 92-22768Charles S. Draper Laboratory Contract DL-H-4847759U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Army - Office of Scientific Research Grant DAAL01-92-6-0197U.S. Navy - Office of Naval Research Grant N00014-89-J-1207Alfred P. Sloan FoundationNational Science Foundation Grant PHY 95-01984U.S. Army Research Office Contract DAAL01-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1642U.S. Navy - Office of Naval Research Grant N00014-94-1-080

    Soviet Russia and the Far East

    No full text

    Rise of Russia in Asia

    No full text

    The New Soviet empire

    No full text
    218 p.; 22 cm

    Politics and World-Economy in the Great Depression of 1929–1934

    No full text

    A Randomized Clinical Trial Comparing Three Different Exercise Strategies for Optimizing Aerobic Capacity and Skeletal Muscle Performance in Older Adults: Protocol for The Dart Study

    No full text
    © Copyright © 2019 Tavoian, Russ, Law, Simon, Chase, Guseman and Clark. Background: Age-related declines in physical function lead to decreased independence and higher healthcare costs. Individuals who meet the endurance and resistance exercise recommendations can improve their physical function and overall fitness, even into their ninth decade. However, most older adults do not exercise regularly, and the majority of those who do only perform one type of exercise, and in doing so are not getting the benefits of endurance or resistance exercise. Herein we present the study protocol for a randomized clinical trial that will investigate the potential for high-intensity interval training (HIIT) to improve maximal oxygen consumption, muscular power, and muscle volume (primary outcomes), as well as body composition, 6-min walk distance, and muscular strength and endurance (secondary outcomes). Methods and Analysis: This is a single-site, single-blinded, randomized clinical trial. A minimum of 24 and maximum of 30 subjects aged 60–75 that are generally healthy but insufficiently active will be randomized. After completion of baseline assessments, participants will be randomized in a 1:1:1 ratio to participate in one of three 12-week exercise programs: stationary bicycle HIIT, stationary bicycle moderate-intensity continuous training (MICT), or resistance training. Repeat assessments will be taken immediately post intervention. Discussion: This study will examine the potential for stationary bicycle HIIT to result in both cardiorespiratory and muscular adaptations in older adults. The results will provide important insights into the effectiveness of interval training, and potentially support a shift from volume-driven to intensity-driven exercise strategies for older adults. Clinical Trial Registration: This trial is registered with ClinicalTrials.gov (registration number: NCT03978572, date of registration June 7, 2019)
    corecore