7 research outputs found
Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow
Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron ïŹuxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron ïŹow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination conïŹrmed that the minor pea Fd isoform promotes enhanced cyclic ïŹow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms.Fil: Blanco, NicolĂĄs Ernesto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Rosario. Instituto de BiologĂa Molecular y Celular de Rosario; Argentina. Universidad de Umea; SueciaFil: Ceccoli, Romina Denis. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Rosario. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Dalla Via, Maria Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂa GenĂ©tica y BiologĂa Molecular; ArgentinaFil: Voss, Ingo. UniversitĂ€t OsnabrĂŒck; AlemaniaFil: Segretin, Maria Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones En IngenierĂa GenĂ©tica y BiologĂa Molecular; ArgentinaFil: Bravo Almonacid, Fernando Felix. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones En IngenierĂa GenĂ©tica y BiologĂa Molecular; ArgentinaFil: Melzer, Michael. Leibniz-Institut fĂŒr Pflanzengenetik und Kulturpflanzenforschung, Physiologie und Zellbiologie; AlemaniaFil: Hajirezaei, Mohammad Reza. Leibniz-Institut fĂŒr Pflanzengenetik und Kulturpflanzenforschung, Physiologie und Zellbiologie; ArgentinaFil: Scheibe, Renate. UniversitĂ€t OsnabrĂŒck; AlemaniaFil: Hanke, Guy T.. UniversitĂ€t OsnabrĂŒck; Alemani
How legumes recognize rhizobia
Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.Fil: Dalla Via, Maria Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Zanetti, MarĂa Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; Argentin
Knock-down of a member of the isoflavone reductase gene family impairs plant growth and nodulation in Phaseolus vulgaris
Flavonoids and isoflavonoids participate in the signaling exchange between roots of legumes and nitrogen-fixing rhizobia and can promote division of cortical cells during nodule formation by inhibiting auxin transport. Here, we report the characterization of a member of the common bean isoflavone reductase (EC 1.3.1.45, PvIFR1) gene family, an enzyme that participates in the last steps of the biosynthetic pathway of isoflavonoids. Transcript levels of PvIFR1 were detected preferentially in the susceptible zone of roots, augmented upon nitrogen starvation and in response to Rhizobium etli inoculation at very early stages of the interaction. Knockdown of PvIFR1 mediated by RNA interference (RNAi) in common bean composite plants resulted in a reduction of shoot and root length. Furthermore, reduction of PvIFR1 mRNAs also affected growth of lateral roots after emergence, a stage in which auxins are required to establish a persistent meristem. Upon inoculation, the number of nodules formed by different strains of R. etli was significantly lower in IFR RNAi than in control roots. Transcript levels of two auxinregulated genes are consistent with lower levels of auxin in PvIFR1 silenced roots. These results suggest a complex role of PvIFR1 during plant growth, root development and symbiosis, all processes in which auxin transport is involved.Fil: RĂpodas, Carolina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Dalla Via, Maria Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Aguilar, Orlando Mario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Zanetti, MarĂa Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; Argentin
Changes in the common bean (Phaseolus vulgaris) transcriptome in response to secreted and surface signal molecules of Rhizobium etli
Establishment of nitrogen fixing symbiosis requires the recognition of rhizobial molecules to initiate the development of nodules. Using transcriptional profiling of roots inoculated with mutant strains defective in the synthesis of Nod Factor (NF), exopolysaccharide (EPS) or lipopolysaccharide (LPS), we identified 2606 genes from common bean (Phaseolus vulgaris) that are differentially regulated at early stages of its interaction with Rhizobium etli. Many transcription factors from different families are modulated by NF, EPS and LPS in different combinations, suggesting that the plant response depends on the integration of multiple signals. Some receptors identified as differentially expressed constitute excellent candidates to participate in signal perception of molecules derived from the bacteria. Several components of the ethylene signal response, a hormone that plays a negative role during early stages of the process, were down-regulated by NF and LPS. In addition, genes encoding proteins involved in small RNA-mediated gene regulation were regulated by these signal molecules, such as Argonaute 7, a specific component of the TAS3 derived tasiRNAs biosynthetic pathway, an RNA dependent RNA polymerase and a XH/XP domain-containing protein, which is part of the RNA directed-DNA methylation. Interestingly, a number of genes encoding components of the circadian central oscillator were down-regulated by NF and LPS, suggesting that a root circadian clock is adjusted at early stages of symbiosis. Our results reveal a complex interaction of the responses triggered by NF, LPS and EPS that integrates information of the signals present in the surface or secreted by rhizobia.Fil: Dalla Via, Maria Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Narduzzi, Candela. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Zanetti, MarĂa Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Aguilar, Orlando Mario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; Argentin
Comparative phylogenetic and expression analysis of small GTPases families in legume and non-legume plants
Background: Small monomeric GTPases act as molecular switches in several processes that involve polar cell growth, participating mainly in vesicle trafficking and cytoskeleton rearrangements. This gene superfamily has largely expanded in plants through evolution as compared with other Kingdoms, leading to the suggestion that members of each subfamily might have acquired new functions associated to plant-specific processes. Legume plants engage in a nitrogen-fixing symbiotic interaction with rhizobia in a process that involves polar growth processes associated with the infection throughout the root hair. To get insight into the evolution of small GTPases associated with this process, we use a comparative genomic approach to establish differences in the Ras GTPase superfamily between legume and non-legume plants. Results: Phylogenetic analyses did not show clear differences in the organization of the different subfamilies of small GTPases between plants that engage or not in nodule symbiosis. Protein alignments revealed a strong conservation at the sequence level of small GTPases previously linked to nodulation by functional genetics. Interestingly, one Rab and three Rop proteins showed conserved amino acid substitutions in legumes, but these changes do not alter the predicted conformational structure of these proteins. Although the steady-state levels of most small GTPases do not change in response to rhizobia, we identified a subset of Rab, Rop and Arf genes whose transcript levels are modulated during the symbiotic interaction, including their spatial distribution along the indeterminate nodule. Conclusions: This study provides a comprehensive study of the small GTPase superfamily in several plant species. The genetic program associated to root nodule symbiosis includes small GTPases to fulfill specific functions during infection and formation of the symbiosomes. These GTPases seems to have been recruited from members that were already present in common ancestors with plants as distant as monocots since we failed to detect asymmetric evolution in any of the subfamily trees. Expression analyses identified a number of legume members that can have undergone neo- or sub-functionalization associated to the spatio-temporal transcriptional control during the onset of the symbiotic interaction.Fil: Flores, Ana Claudia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Dalla Via, Maria Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Savy, Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Mancini Villagra, Ulises Maximiliano. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Zanetti, MarĂa Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; Argentin
The monomeric GTPase RabA2 is required for progression and maintenance of membrane integrity of infection threads during root nodule symbiosis
Key message: Progression of the infection canal that conducts rhizobia to the nodule primordium requires a functional Rab GTPase located in Golgi/trans-Golgi that also participate in root hair polar growth. Abstract: Common bean (Phaseolus vulgaris) symbiotically associates with its partner Rhizobium etli, resulting in the formation of root nitrogen-fixing nodules. Compatible bacteria can reach cortical cells in a tightly regulated infection process, in which the specific recognition of signal molecules is a key step to select the symbiotic partner. In this work, we show that RabA2, a monomeric GTPase from common bean, is required for the progression of the infection canal, referred to as the infection thread (IT), toward the cortical cells. Expression of miss-regulated mutant variants of RabA2 resulted in an increased number of abortive infection events, including bursting of ITs and a reduction in the number of nodules. Nodules formed in these plants were small and contained infected cells with disrupted symbiosome membranes, indicating either early senescence of these cells or defects in the formation of the symbiosome membrane during bacterial release. RabA2 localized to mobile vesicles around the IT, but mutations that affect GTP hydrolysis or GTP/GDP exchange modified this localization. Colocalization of RabA2 with ArfA1 and a Golgi marker indicates that RabA2 localizes in Golgi stacks and the trans-Golgi network. Our results suggest that RabA2 is part of the vesicle transport events required to maintain the integrity of the membrane during IT progression.Fil: Dalla Via, Maria Virginia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Traubenik, Laura Soledad. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Rivero Hernandez, Claudio Hernan. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Aguilar, Orlando Mario. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Zanetti, MarĂa Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de BiotecnologĂa y BiologĂa Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de BiotecnologĂa y BiologĂa Molecular; Argentin