74 research outputs found
PRESENCE OF THE LEOPARD SEAL, HYDRURGA LEPTONYX (DE BLAINVILLE, 1820), ON THE COAST OF CHILE: AN EXAMPLE OF THE ANTARCTICA - SOUTH AMERICA CONNECTION IN THE MARINE ENVIRONMENT
Sightings of 114 leopard seals, Hydrurga leptonyx, have been recorded along the Chilean coasts from 1944 to 2010. Mostly immature seals occurred in northern and central Chile (18°30´S-39°59´S), especially in winter, while immature and adult individuals of both sexes and in good condition were commonly sighted year-round in glacial areas of southern Chile, especially Tierra del Fuego (south of 53°43´S), suggesting that this Antarctic species can be consider as a regular member of the marine fauna of Chile, with occasionally hauling out on the northern coastline not as vagrants, but as seasonal transients. Keeping in mind data limitation, we discuss some ways of northern dispersion and the subsequent residence of some animals in the Southern region of South America. These include, respectively: the close proximity of the Fueguian channels with the Antarctic Peninsula facilitated by the northward extension of the Antarctic pack ice during winter and/or through the influence of the Malvinas current; and the suitable habitat of the Fuegian channels, with similar characteristics to the Antarctic environment and locally abundant food resources.PRESENCIA DE LA FOCA LEOPARDO, HYDRURGA LEPTONYX (DE BLAINVILLE, 1820) EN LA COSTA DE CHILE: UN EJEMLO DE CONEXIÓN DE AMBIENTE MARINO ENTRE ANTÁRTICA Y AMÉRICA DEL SUR. Entre 1927 y 2010, 115 focas leopardos, Hydrurga leptonyx, han sido egistradas a lo largo de la costa chilena. En la región centro-norte (18°20´S-39°59´S), especialmente en invierno, la mayoría de los registros corresponden a individuos inmaduros; mientras que ejemplares maduros e inmaduros de ambos sexos y en buenas condiciones físicas son avistados durante todo el año, en áreas de glaciares del sur de Chile, especialmente en Tierra del Fuego (sur de los 53°43´S), sugiriendo que esta especie antártica puede ser considerado como un miembro regular de la fauna marina de Chile, con presencia ocasional en las costas norteñas, como vagabundo estacional. Teniendo en cuenta la limitación de los datos, discutimos algunas vías de dispersión hacia el norte y la presencia durante todo el año de los animales en la región austral de América del Sur. Estas incluyen, respectivamente: la cercana proximidad de los canales fueguinos con la Península Antártica, facilitado por la extensión hacia el norte del hielo marino antártico durante el invierno y/o a través de la influencia de la corriente de las Malvinas; y el hábitat apropiado de los canales fueguinos, con características similares al ambiente Antártico y abundante recursos alimenticios locales. Palabras claves: Foca leopardo; Chile; América del Sur; Océano austral.PRESENÇA DA FOCA-LEOPARDO, HYDRURGA LEPTONYX (DE BLAINVILLE, 1820), NA COSTA DO CHILE: UM EXEMPLO DA CONEXÃO ENTRE ANTÁRTICA E AMÉRICA DO SUL NO AMBIENTE MARINHO. Entre 1927 e 2010, 115 focas-leopardo, Hydrurga leptonyx, foram avistadas ao longo da costa Chilena. Na região centro-norte (18°20´S-39°59´S), especialmente no inverno, a maioria dos registros esteve representada por indivíduos imaturos. Indivíduos imaturos e adultos de ambos os sexos ocorreram ao longo do ano, em boas condições físicas, em áreas glaciais da região sul do Chile, especialmente na Terra do Fogo (ao sul de 53°43´S). Nesta revisão, há evidências robustas para sugerir que a espécie é uma visitante regular da fauna Antártica em território austral chileno, ocorrendo eventualmente como vadios sazonais na costa norte do país. Apesar das limitações inerentes aos dados, discutem-se sobre a dispersão da espécie em direção ao norte e subsequente presença de indivíduos na porção austral da América do Sul. Estas incluem respectivamente: a proximidade entre os canais Foguinos e a Península Antártica, favorecida pela expansão da capa de gelo em direção ao norte durante o inverno e/ou pela influência da corrente das Malvinas; o habitat adequado nos canais Foguinos, com características similares àquelas do ambiente Antártico, somado à presença de recursos alimentares localmente abundantes. Palavras-chave: Foca-leopardo; Chile; América do Sul; Oceano Austral
Runs of homozygosity in killer whale genomes provide a global record of demographic histories
Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (\u3c1 \u3eMb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (\u3e1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH \u3e1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression
Identifying seasonal distribution patterns of fin whales across the Scotia Sea and the Antarctic Peninsula region using a novel approach combining habitat suitability models and ensemble learning methods
Following their near extirpation by industrial whaling of the 20th century, the population status of Southern Hemisphere fin whales (SHFW) remains unknown. Systematic surveys estimating fin whale abundance in the Southern Ocean are not yet available. Records of fin whale sightings have been collected by a variety of organisations over the past few decades, incorporating both opportunistic data and dedicated survey data. Together, these isolated data sets represent a potentially valuable source of information on the seasonality, distribution and abundance of SHFW. We compiled records across 40 years from the Antarctic Peninsula and Scotia Sea from multiple sources and used a novel approach combining ensemble learning and a maximum entropy model to estimate abundance and distribution of SHFW in this region. Our results show a seasonal distribution pattern with pronounced centres of distribution from January-March along the West Antarctic Peninsula. Our new approach allowed us to estimate abundance of SHFW for discrete areas from a mixed data set of mainly opportunistic presence only data
Identifying seasonal distribution patterns of fin whales across the Scotia Sea and the Antarctic Peninsula region using a novel approach combining habitat suitability models and ensemble learning methods
Following their near extirpation by industrial whaling of the 20th century, the population status of Southern Hemisphere fin whales (SHFW) remains unknown. Systematic surveys estimating fin whale abundance in the Southern Ocean are not yet available. Records of fin whale sightings have been collected by a variety of organisations over the past few decades, incorporating both opportunistic data and dedicated survey data. Together, these isolated data sets represent a potentially valuable source of information on the seasonality, distribution and abundance of SHFW. We compiled records across 40 years from the Antarctic Peninsula and Scotia Sea from multiple sources and used a novel approach combining ensemble learning and a maximum entropy model to estimate abundance and distribution of SHFW in this region. Our results show a seasonal distribution pattern with pronounced centres of distribution from January-March along the West Antarctic Peninsula. Our new approach allowed us to estimate abundance of SHFW for discrete areas from a mixed data set of mainly opportunistic presence only data.publishedVersio
Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly
The advent of massive parallel sequencing technologies has resulted in an increase of studies based upon complete mitochondrial genome DNA sequences that revisit the taxonomic status within and among species. Spatially distinct monophyly in such mitogenomic genealogies, i.e., the sharing of a recent common ancestor among con-specific samples collected in the same region has been viewed as evidence for subspecies. Several recent studies in cetaceans have employed this criterion to suggest subsequent intraspecific taxonomic revisions. We reason that employing intra-specific, spatially distinct monophyly at non-recombining, clonally inherited genomes is an unsatisfactory criterion for defining subspecies based upon theoretical (genetic drift) and practical (sampling effort) arguments. This point was illustrated by a re-analysis of a global mitogenomic assessment of fin whales, Balaenoptera physalus spp., published by Archer et al. (2013), which proposed to further subdivide the Northern Hemisphere fin whale subspecies, B. p. physalus. The proposed revision was based upon the detection of spatially distinct monophyly among North Atlantic and North Pacific fin whales in a genealogy based upon complete mitochondrial genome DNA sequences. The extended analysis conducted in this study (1676 mitochondrial control region, 162 complete mitochondrial genome DNA sequences and 20 microsatellite loci genotyped in 380 samples) revealed that the apparent monophyly among North Atlantic fin whales reported by Archer et al. (2013) to be due to low sample sizes. In conclusion, defining sub-species from monophyly (i.e., the absence of para- or polyphyly) can lead to erroneous conclusions due to relatively 'trivial' aspects, such as sampling. Basic population genetic processes (i.e., genetic drift and migration) also affect the time to the most recent common ancestor and hence the probability that individuals in a sample are monophyletic
Runs of homozygosity in killer whale genomes provide a global record of demographic histories
Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression
Identifying seasonal distribution patterns of fin whales across the Scotia Sea and the Antarctic Peninsula region using a novel approach combining habitat suitability models and ensemble learning methods
Following their near extirpation by industrial whaling of the 20th century, the population status of Southern Hemisphere fin whales (SHFW) remains unknown. Systematic surveys estimating fin whale abundance in the Southern Ocean are not yet available. Records of fin whale sightings have been collected by a variety of organisations over the past few decades, incorporating both opportunistic data and dedicated survey data. Together, these isolated data sets represent a potentially valuable source of information on the seasonality, distribution and abundance of SHFW. We compiled records across 40 years from the Antarctic Peninsula and Scotia Sea from multiple sources and used a novel approach combining ensemble learning and a maximum entropy model to estimate abundance and distribution of SHFW in this region. Our results show a seasonal distribution pattern with pronounced centres of distribution from January-March along the West Antarctic Peninsula. Our new approach allowed us to estimate abundance of SHFW for discrete areas from a mixed data set of mainly opportunistic presence only data
Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly
© The Authors, 2019. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. The definitive version was published in Molecular Phylogenetics and Evolution (2019), doi:10.1016/j.ympev.2019.02.003.The advent of massive parallel sequencing technologies has resulted in an increase of studies based upon complete mitochondrial genome DNA sequences that revisit the taxonomic status within and among species. Spatially distinct monophyly in such mitogenomic genealogies, i.e., the sharing of a recent common ancestor among con-specific samples collected in the same region has been viewed as evidence for subspecies. Several recent studies in cetaceans have employed this criterion to suggest subsequent intraspecific taxonomic revisions. We reason that employing intra-specific, spatially distinct monophyly at non-recombining, clonally inherited genomes is an unsatisfactory criterion for defining subspecies based upon theoretical (genetic drift) and practical (sampling effort) arguments. This point was illustrated by a re-analysis of a global mitogenomic assessment of fin whales, Balaenoptera physalus spp., published by Archer et al. (2013), which proposed to further subdivide the Northern Hemisphere fin whale subspecies, B. p. physalus. The proposed revision was based upon the detection of spatially distinct monophyly among North Atlantic and North Pacific fin whales in a genealogy based upon complete mitochondrial genome DNA sequences. The extended analysis conducted in this study (1,676 mitochondrial control region, 162 complete mitochondrial genome DNA sequences and 20 microsatellite loci genotyped in 358 samples) revealed that the apparent monophyly among North Atlantic fin whales reported by Archer et al. (2013) to be due to low sample sizes. In conclusion, defining sub-species from monophyly (i.e., the absence of para- or polyphyly) can lead to erroneous conclusions due to relatively “trivial” aspects, such as sampling. Basic population genetic processes (i.e., genetic drift and migration) also affect the time to the most recent common ancestor and hence the probability that individuals in a sample are monophyletic.We are grateful to Hanne Jørgensen, Anna Sellas, Mary Beth Rew and Christina Færch-Jensen for technical assistance. We thank Drs. P. E. Rosel and K. D. Mullin (U.S. National Marine Fisheries Service Southeast Fisheries Science Center) and members of the U.S. Northeast and Southeast Region Marine Mammal Stranding Network and its response teams, including the International Fund for Animal Welfare, the Marine Mammal Stranding Center, Mystic Aquarium, the Riverhead Foundation for Marine Research and Preservation (K. Durham) and the Marine Mammal Stranding Program of the University of North Carolina Wilmington for access to fin whale samples from the western North Atlantic. We thank Gisli Vikingsson for providing samples. We are indebted to Dr. Eduardo Secchi for facilitating data sharing. Data collection in the Southern Ocean was conducted under research projects Baleias (CNPq grants 557064/2009-0 and 408096/2013-6), INTERBIOTA (CNPq 407889/2013-2) and INCT-APA (CNPq 574018/2008-5), of the Brazilian Antarctic Program and a contribution by the research consortium ‘Ecology and Conservation of Marine Megafauna – EcoMega-CNPq’. MAS was supported through a FCT Investigator contract funded by POPH, QREN European Social Fund, and Portuguese Ministry for Science and Education. Data collection in the Azores was funded by TRACE-PTDC/MAR/74071/2006 and MAPCET-M2.1.2/F/012/2011 [FEDER, COMPETE, QREN European Social Fund, and Proconvergencia Açores/EU Program]. Fin whale illustration herein is used with the permission of Frédérique Lucas. We acknowledge the Center for Information Technology of the University of Groningen for IT support and access to the Peregrine high performance-computing cluster
The retrospective analysis of Antarctic tracking data project
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information
System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations
Anais do V Encontro Brasileiro de Educomunicação: Educação midiática e políticas públicas
A presente coletânea, que chega ao público através de um suporte digital, tem como objetivo disponibilizar os papers, bem como os relatos de experiências educomunicativas apresentados durante o V ENCONTRO BRASILEIRO DE EDUCOMUNICAÇÃO, que teve como tema central: “Educação Midiática e Políticas Públicas”. O evento foi realizado em São Paulo, entre 19 e 21 de setembro de 2013, a partir de uma parceria entre o NCE/USP - Núcleo de Comunicação e Educação da USP, a Licenciatura em Educomunicação da ECA/USP, a ABPEducom – Associação Brasileira de Pesquisadores e Profissionais da Educomunicação e a FAPCOM – Faculdade Paulus de Tecnologia e Comunicação, que ofereceu seu campus, na Vila Mariana, para os atos do evento.
Os presentes anais disponibilizam o texto de abertura, de autoria do coordenador geral do evento, denominado “Educação midiática e políticas públicas: vertentes históricas da emergência da Educomunicação na América Latina”. Na sequência, apresentam 61 papers sobre aspectos específicos da temática geral, resultantes de pesquisas na área, seguidos de 27 relatos de práticas educomunicativas, em nível nacional
- …