19 research outputs found

    Stable emulsions of droplets in a solid edible organogel matrix

    Get PDF
    Sitosterol–oryzanol organogels are unstable near water, but are shown to be stable in the presence of glycerol.</p

    Molecular Interactions behind the Self-Assembly and Microstructure of Mixed Sterol Organogels

    Get PDF
    In this work, we have employed docking and atomistic molecular dynamics (MD) simulations supported by complementary experiments using atomic force microscopy, rheology and spectroscopy to investigate the self-assembled structure of β-sitosterol and γ-oryzanol molecules into cylindrical tubules in a non-aqueous solvent. Docking models of several phytosterols, including sitosterol, with oryzanol and other sterol-esters demonstrate that for systems to form tubules, the phytosterol sterane group must be stacked in a wedge shape with the esters sterane group, and a hydrogen bond must form between the hydroxyl group of the phytosterol and the carbonyl group of the ester. Molecular dynamics of the self-assembled structure were initiated with the molecules in a roughly cylindrical configuration, as suggested from previous experimental studies, and the configurations were found to be stable during 50 ns simulations. We performed MD simulations of two tubules in proximity to better understand the aggregation of these fibrils and how the fibrils interact in order to stick together. We found that an interfibril network of non-covalent bonds, in particular van der Waals and π-π contacts, which is formed between the ferulic acid groups of oryzanol through the hydroxyl, methoxy and aromatic groups, is responsible for the surface-to-surface interactions between fibrils; an observation supported by molecular spectroscopy. We believe these interactions are of primary importance in creating a strong organogel network

    Insights into the anthrax lethal factor-substrate interaction and selectivity using docking and molecular dynamics simulations and NMR conformational study of the anthrax lethal factor catalytic center

    No full text
    The anthrax toxin of the bacterium Bacillus anthracis consists of three distinct proteins, one of which is the anthrax lethal factor (LF). LF is a gluzincin Zn‐dependent, highly specificmetalloprotease with a molecular mass of ~90 kDa that cleaves most isoforms of the family of mitogen‐activated protein kinase kinases (MEKs/MKKs) close to their amino termini, resulting in the inhibition of one or more signaling pathways. Previous studies on the crystal structures of uncomplexed LF and LF complexed with the substrate MEK2 or a MKK‐based synthetic peptide provided structure‐activity correlations and the basis for the rational design of efficient inhibitors. However, in the crystallographic structures, the substrate peptide was not properly oriented in the active site due to the absence of the catalytic zinc atom. The primary target of the thesis was to examine in silico the LF‐MEK/MKK interaction along the catalytic channel up to a distance of 20 Å from the zinc atom, using docking and molecular dynamics protocols. This residue‐specific view of the enzyme‐substrate interaction provides valuable information about: (i) the substrate selectivity of LF and its inactivation of MEKs/MKKs, (an issue highly important not only to anthrax infection, but also to the pathogenesis of cancer), and (ii) the discovery of new, previously unexploited, hot‐spots of the LF catalytic channel that are important in the enzyme/substrate binding and interaction. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site are essential to elucidate its enzymatic properties. The thesis interest was oriented then to the solution structure of the catalytic domain of apo LF and present data on its dynamics. The solution nuclear magnetic resonance (NMR) structure and mobility studies of the catalytic domain of apoLF₆₇₂₋₇₇₆ reveals that the conformation of the C-terminal construct of the LF catalytic domain and the orientation of the six helical motifs are remarkably similar to the native structure, indicating the LF polypeptides catalytic site as reliable models of the enzyme active centre.Η θανατηφόρος δράση του βακτηρίου του άνθρακα (Bacillus anthracis), στο οποίο οφείλεται η καλούμενη ως νόσος του άνθρακα, εντοπίζεται στη συνεργό δράση τριών εκλυόμενων τοξινών του και ειδικότερα στην πρωτεολυτική δράση του θανατηφόρου παράγοντα (anthrax Lethal Factor, LF). Ο LF είναι μία μεταλλοπρωτεάση ψευδαργύρου και ισχυρή τοξίνη, η οποία απελευθερώνεται στον οργανισμό στα πρώτα στάδια προσβολής του ατόμου από το βακτήριο. Το ενεργό/καταλυτικό κέντρο του αναγνωρίζει και υδρολύει με εξαιρετική εξειδίκευση πεπτιδικά υποστρώματα ΜΚΚ κινασών, αναστέλλοντας τις διαδικασίες μεταγωγής σήματος στα κύτταρα του μολυσμένου ξενιστή επιφέροντας το θάνατό του. Από την άλλη, η εξειδικευμένη πρωτεολυτική ικανότητα του LF έναντι αυτών των κινασών, οι οποίες πρόσφατα συσχετίστηκαν με ανάπτυξη καρκινικών όγκων, ενδέχεται να αποτελέσει μια καινοτόμο θεραπευτική οδό για την αντιμετώπιση καρκινικών όγκων εν τη γενέση τους. Ωστόσο, ο μηχανισμός της αλληλεπίδρασης σε μοριακό επίπεδο και της πρωτεολυτικής διάσπασης των υποστρωμάτων του LF παραμένει μέχρι και σήμερα αδιευκρίνιστος και συνεπώς χρήζει ιδιαίτερης μελέτης. Προς αυτή την κατεύθυνση εστιάστηκε το ενδιαφέρον της διατριβής έχοντας ως πρωτογενείς στόχους την in silico μελέτη της αλληλεπίδρασης, σε μοριακό επίπεδο, του καταλυτικού κέντρου του LF με τα υποστρώματα των ΜΚΚ κινασών που υδρολύει, και την μελέτη μέσω Φασματοσκοπίας NMR της δομής και δυναμικής του ενεργού κέντρου του LF σε ελεύθερη μορφή, το οποίο ευρίσκεται στο C‐τελικό άκρο του. Με την εφαρμογή τεχνικών προσομοίωσης πρόσδεσης και μοριακής δυναμικής πραγματοποιήθηκε in silico μελέτη των συμπλόκων LF‐υποστρώματα, και προσδιορίστηκε ένα ευρύ φάσμα αλληλεπιδράσεων, όχι μόνο γύρω από το μεταλλικό/καταλυτικό κέντρο αλλά και σε απόσταση 20 Å στην περιοχή δέσμευσης του Zn²⁺, υποδεικνύοντας έτσι τους δομικούς παράγοντες που πιθανόν καθορίζουν το είδος της αλληλεπίδρασής ενζύμου με τις κινάσες που υδρολύει, παρέχοντας έτσι σημαντικές πληροφορίες για τον σχεδιασμό και την αναζήτηση βιοδραστικών μορίων με φαρμακευτικό ενδιαφέρον έναντι στον LF. Τα δεδομένα αυτά μπορούν επίσης να αξιοποιηθούν σε μελέτες δομής‐δράσης με σημειακές και/ή πολλαπλές μεταλλάξεις. Με την χρήση φασματοσκοπίας NMR, πραγματοποιήθηκε μελέτη της δομής και δυναμικής του ενεργού κέντρου του LF σε ελεύθερη μορφή (apoLF₆₇₂₋₇₇₆). Η επίλυση των τρισδιάστατων NMR δομών του apoLF₆₇₂₋₇₇₆ έδωσαν μια εξαιρετικά σαφή εικόνα για τη δομή του ενεργού κέντρου του LF, το οποίο βρίσκεται σε συμφωνία με τις υπάρχουσες κρυσταλλικές δομές. Τα συγκεκριμένα ΝΜR δεδομένα μπορούν να αξιοποιηθούν σε μελέτες με NMR υπό το καθεστώς αλληλεπίδρασης του LF με τα πεπτιδικά υποστρώματά του και χαρακτηρισμό της δυναμικής της αλληλεπίδρασης, όπως επίσης και τον υπολογισμό της συγγένειας δέσμευσής τους

    Additional file 1: of SEPIa, a knowledge-driven algorithm for predicting conformational B-cell epitopes from the amino acid sequence

    No full text
    List of antigen proteins of the S85 and S83 datasets (Table S1) and of the S19 dataset (Table S2), and values of the amino acid frequency-based features F1 and F2 (Table S3). (DOCX 34 kb

    SEPIa, a knowledge-driven algorithm for predicting conformational B-cell epitopes from the amino acid sequence.

    Get PDF
    The identification of immunogenic regions on the surface of antigens, which are able to be recognized by antibodies and to trigger an immune response, is a major challenge for the design of new and effective vaccines. The prediction of such regions through computational immunology techniques is a challenging goal, which will ultimately lead to a drastic limitation of the experimental tests required to validate their efficiency. However, current methods are far from being sufficiently reliable and/or applicable on a large scale.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Cation-pi, amino-pi, pi-pi, and H-bond interactions stabilize antigen-antibody interfaces.

    No full text
    The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions-in particular B-cell epitopes-but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen-antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B-cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen-antibody interfaces were shown to differ from other protein-protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H-bond, cation-π, amino-π, and π-π interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino-π and π-π chains, are formed. The amino acid composition differs significantly between the interfaces: antigen-antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes-albeit to a lesser extent-have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B-cell epitope prediction.Proteins 2014. © 2014 Wiley Periodicals, Inc.JOURNAL ARTICLESCOPUS: ar.jFLWOAinfo:eu-repo/semantics/publishe

    Computer simulations: molecular dynamics simulations

    No full text
    The structure and stability of oleogels made from the sterol β-sitosterol and sterol ester γ-oryzanol are studied by a combination of molecular docking and molecular dynamics (MD) simulation. Molecular docking reveals the stacking motif of the individual sterols in dimer form and a model tubule, highlighting two structural features. First, a hydrogen bond between the phenol group of the sterol and carbonyl of the ester bond of oryzanol appears to be important in selecting for a parallel head-to-head dimer conformation. Secondly, a methyl group attached to the C14 of the oryzanol introduces a steric hindrance to stacking of the steroid cores making them adopt a wedge shape. It is believed the wedge-shape leads to helical packing of dimers in the tubule. MD allows us to probe interactions between tubules in the network gel structure. Simulations of two interacting tubules reveal the importance of van-der Waals, H-bonding, dispersion interactions and π-π stacking of ferulate moieties of oryzanol on association of tubules. Finally, we investigate the instability of phytosterol tubules in water, showing that the H-bond in the dimer is unstable in water, leading to tubule disruption. Mechanisms for the water stability of oleogels in the presence of glycerol and lecithin are proposed
    corecore