129 research outputs found

    Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier

    Get PDF
    The potential application of the primary amine/nitrile pair as a liquid organic hydrogen carrier (LOHC) has been evaluated. Ruthenium complexes of formula [(p-cym)Ru(NHC)Cl2] (NHC=N-heterocyclic carbene) catalyze the acceptorless dehydrogenation of primary amines to nitriles with the formation of molecular hydrogen. Notably, the reaction proceeds without any external additive, under air, and under mild reaction conditions. The catalytic properties of a ruthenium complex supported on the surface of graphene have been explored for reutilization purposes. The ruthenium-supported catalyst is active for at least 10 runs without any apparent loss of activity. The results obtained in terms of catalytic activity, stability, and recyclability are encouraging for the potential application of the amine/nitrile pair as a LOHC. The main challenge in the dehydrogenation of benzylamines is the selectivity control, such as avoiding the formation of imine byproducts due to transamination reactions. Herein, selectivity has been achieved by using long-chain primary amines such as dodecylamine. Mechanistic studies have been performed to rationalize the key factors involved in the activity and selectivity of the catalysts in the dehydrogenation of amines. The experimental results suggest that the catalyst resting state contains a coordinated amine.The authors thank the financial support from MINECO (CTQ2015-69153-C2-2-R), Generalitat Valenciana (AICO/2015/ 039), and the UniversitatJaume I(P1.1B2015-09).The authors are very grateful to the “Serve is Centrals d’Instr umentac ij Cien- t&fica (SCIC)” of the Universitat Jaume I

    Formic acid synthesis using CO₂ as raw material: Techno-economic and environmental evaluation and market potential

    Get PDF
    The future of carbon dioxide utilisation (CDU) processes, depend on (i) the future demand of synthesised products with CO₂, (ii) the availability of captured and anthropogenic CO₂, (iii) the overall CO₂ not emitted because of the use of the CDU process, and (iv) the economics of the plant. The current work analyses the mentioned statements through different technological, economic and environmental key performance indicators to produce formic acid from CO₂, along with their potential use and penetration in the European context. Formic acid is a well-known chemical that has potential as hydrogen carrier and as fuel for fuel cells. This work utilises process flow modelling, with simulations developed in CHEMCAD, to obtain the energy and mass balances, and the purchase equipment cost of the formic acid plant. Through a financial analysis, with the net present value as selected metric, the price of the tonne of formic acid and of CO₂ are varied to make the CDU project financially feasible. According to our research, the process saves CO₂ emissions when compared to its corresponding conventional process, under specific conditions. The success or effectiveness of the CDU process will also depend on other technologies and/or developments, like the availability of renewable electricity and steam

    ChemInform Abstract: Metallabenzenes and Metallabenzenoids

    No full text

    High-pressure NMR spectroscopy: An in situ tool to study tin-catalyzed synthesis of organic carbonates from carbon dioxide and alcohols. Part 2 [1]

    No full text
    Dialkoxide diorganotin(IV) complexes are known to readily react with carbon dioxide under pressure and they are considered as suitable catalyst precursor models for the direct synthesis of organic carbonates. To gain a better understanding of CO2 insertion processes with Sn-OR bonds, the reactivity of n-Bu2Sn(OCH(CH3)(2))(2) (2) was investigated using high-pressure NMR (HP-NMR) spectroscopy. In deuterated solvents (isopropanol-d(8) and toluene-d(8)) under 50 bar of CO2 pressure at 80 degrees C, Sn-119{H-1} NMR experiments revealed the exclusive formation of an unprecedented tetraorganodistannoxane species, characterized as the bis[diisopropycarbonatotetrabutyldistannoxane] complex, {[n-Bu2Sn(OC(O)OCH(CH3)(2))(2)](2)O}(2) {7}(2). The formation of hemicarbonato ligands resulting from CO2 insertion was also confirmed by FT-IR and C-13 NMR spectroscopies. To the best of our knowledge, spectroscopic detection of the distannoxane species 7 is unprecedented. (C) 2015 Elsevier B.V. All rights reserved

    A Viable Hydrogen Storage and Release System Based on Cesium Formate and Bicarbonate Salts: Mechanistic Insights into the Hydrogen Release Step

    No full text
    Aqueous solutions of cesium formate and bicarbonate repre- sent an effective hydrogen storage–delivery couple that under- goes either release or take up of hydrogen in the presence of {RuCl2(mTPPTS)2}2 (TPPTS = triphenylphosphine trisulfonate) and excess mTPPTS ligand, with no other additives required. Cesium salt solutions offer the advantage of improved volu- metric and gravimetric H2 density compared to their sodium and potassium analogs, owing to their high water solubility. Details of the equilibrium between formate and bicarbonate, which constitutes an important parameter for the applicability of this H storage/release cycle, were determined. H production is readily tunable by controlling the operating pressure. This behavior was also rationalized through the identification of catalytic intermediates under various conditions. High con- centration formate and bicarbonate solutions were used during the tests and the bidirectional catalytic system could be recycled without loss of activity or replacement of solvent. A tentative mechanism is proposed for the formate dehydrogen- ation step. Among the identified hydride species, the penta- coordinated [RuH(H2O)(TPPTS)3] complex was indispensable for promoting the formate dehydrogenation reaction

    Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts

    No full text
    We present here the results of our investigation on aqueous phase formic acid (FA) dehydrogenation using non-noble metal based pre-catalysts. This required the synthesis of m-trisulfonated-tris[2-(diphe nylphosphino)ethyl]phosphine sodium salt (PP3TS) as a water soluble polydentate ligand. New catalysts, particularly those with iron(II), were formed in situ and produced H2 and CO2 from aqueous FA solutions, requiring no organic co-solvents, bases or any additives. Manometry, multinuclear NMR and FT-IR tech- niques were used to follow the dehydrogenation reactions, calculate kinetic parameters, and analyze the gas mixtures for purity. The catalysts are entirely selective and the gaseous products are free from CO contamination. To the best of our knowledge, these represent the first examples of first row transition metal based catalysts that dehydrogenate quantitatively formic acid in aqueous solution
    corecore