45 research outputs found

    Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere

    Full text link
    We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN) to forecast several basic atmospheric variables on a global grid. New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid, improvements to the CNN architecture, and the minimization of the loss function over multiple steps in a prediction sequence. The cubed-sphere remapping minimizes the distortion on the cube faces on which convolution operations are performed and provides natural boundary conditions for padding in the CNN. Our improved model produces weather forecasts that are indefinitely stable and produce realistic weather patterns at lead times of several weeks and longer. For short- to medium-range forecasting, our model significantly outperforms persistence, climatology, and a coarse-resolution dynamical numerical weather prediction (NWP) model. Unsurprisingly, our forecasts are worse than those from a high-resolution state-of-the-art operational NWP system. Our data-driven model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables. On annual time scales, our model produces a realistic seasonal cycle driven solely by the prescribed variation in top-of-atmosphere solar forcing. Although it is currently less accurate than operational weather forecasting models, our data-driven CNN executes much faster than those models, suggesting that machine learning could prove to be a valuable tool for large-ensemble forecasting.Comment: Manuscript submitted to Journal of Advances in Modeling Earth System

    Sub-seasonal forecasting with a large ensemble of deep-learning weather prediction models

    Full text link
    We present an ensemble prediction system using a Deep Learning Weather Prediction (DLWP) model that recursively predicts key atmospheric variables with six-hour time resolution. This model uses convolutional neural networks (CNNs) on a cubed sphere grid to produce global forecasts. The approach is computationally efficient, requiring just three minutes on a single GPU to produce a 320-member set of six-week forecasts at 1.4{\deg} resolution. Ensemble spread is primarily produced by randomizing the CNN training process to create a set of 32 DLWP models with slightly different learned weights. Although our DLWP model does not forecast precipitation, it does forecast total column water vapor, and it gives a reasonable 4.5-day deterministic forecast of Hurricane Irma. In addition to simulating mid-latitude weather systems, it spontaneously generates tropical cyclones in a one-year free-running simulation. Averaged globally and over a two-year test set, the ensemble mean RMSE retains skill relative to climatology beyond two-weeks, with anomaly correlation coefficients remaining above 0.6 through six days. Our primary application is to subseasonal-to-seasonal (S2S) forecasting at lead times from two to six weeks. Current forecast systems have low skill in predicting one- or 2-week-average weather patterns at S2S time scales. The continuous ranked probability score (CRPS) and the ranked probability skill score (RPSS) show that the DLWP ensemble is only modestly inferior in performance to the European Centre for Medium Range Weather Forecasts (ECMWF) S2S ensemble over land at lead times of 4 and 5-6 weeks. At shorter lead times, the ECMWF ensemble performs better than DLWP.Comment: Submitted to Journal of Advances in Modeling Earth System

    Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh

    Full text link
    We present a parsimonious deep learning weather prediction model on the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) to forecast seven atmospheric variables for arbitrarily long lead times on a global approximately 110 km mesh at 3h time resolution. In comparison to state-of-the-art machine learning weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables. Yet, at one-week lead times its skill is only about one day behind the state-of-the-art numerical weather prediction model from the European Centre for Medium-Range Weather Forecasts. We report successive forecast improvements resulting from model design and data-related decisions, such as switching from the cubed sphere to the HEALPix mesh, inverting the channel depth of the U-Net, and introducing gated recurrent units (GRU) on each level of the U-Net hierarchy. The consistent east-west orientation of all cells on the HEALPix mesh facilitates the development of location-invariant convolution kernels that are successfully applied to propagate global weather patterns across our planet. Without any loss of spectral power after two days, the model can be unrolled autoregressively for hundreds of steps into the future to generate stable and realistic states of the atmosphere that respect seasonal trends, as showcased in one-year simulations. Our parsimonious DLWP-HPX model is research-friendly and potentially well-suited for sub-seasonal and seasonal forecasting

    Numerical Methods for Fluid Dynamics: With Applications to Geophysics

    No full text

    Numerical methods for wave equations in geophysical fluid dynamics

    No full text
    corecore