143 research outputs found

    Kidney: Succinate dehydrogenase-deficient renal cell carcinoma

    Get PDF

    Kidney: Chromophobe renal cell carcinoma

    Get PDF

    Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt's lymphoma

    Get PDF
    Numerical and structural centrosome abnormalities are detected in various human malignancies and have been implicated in the formation of multipolar mitoses, chromosome missegregation, and chromosomal instability. Despite this association between centrosome abnormalities and cancerous growth, a causative role of centrosome aberrations in generating chromosomal instability and aneuploidy has not been universally established. We report here excessive numerical and structural centrosome abnormalities in a malignant Burkitt's lymphoma harboring the characteristic t(8;14) chromosomal translocation. Using conventional karyotyping and fluorescence in situ hybridization (FISH), we detected no signs of ongoing numerical chromosome instability, although the tumor displayed sporadic multipolar metaphases. These findings demonstrate that centrosome abnormalities are not a universal surrogate marker for chromosomal instability in malignant tumors. Moreover, our results suggest a model in which additional cellular alterations may be required to promote centrosome-related mitotic defects in tumor cells

    Genomic alterations in patients with somatic loss of the Y chromosome as the sole cytogenetic finding in bone marrow cells

    Get PDF
    Loss of the Y chromosome (LOY) is one of the most common somatic genomic alterations in hematopoietic cells in men. However, due to the high prevalence of LOY as the sole cytogenetic finding in the healthy older population, differentiating isolated LOY associated with clonal hematologic processes from aging-associated mosaicism can be difficult in the absence of definitive morphological features of disease. In the past, various investigators have proposed that a high percentage of metaphases with LOY is more likely to represent expansion of a clonal myeloid disease-associated population. It is unknown whether the proportion of metaphases with LOY is associated with the incidence of myeloid neoplasia-associated genomic alterations. To address this question, we identified marrow samples with LOY as isolated cytogenetic finding and used targeted next generation sequencing-based molecular analysis to identify common myeloid neoplasia-associated somatic mutations. Among 73 patients with median age of 75 years (range 29-90), the percentage of metaphases with LOY was <25% in 23 patients, 25-49% in 10, 50-74% in 8 and ≥75% in 32. A threshold of ≥75% LOY was significantly associated with morphologic diagnosis of myeloid neoplasm (p = 0.004). Further, ≥75% LOY was associated with a higher lifetime incidence of diagnosis of myelodysplastic syndromes (MDS; p < 0.0001), and in multivariate analysis ≥75% LOY was a statistically significant independent predictor of myeloid neoplasia [OR 6.17; 95% CI = 2.15-17.68; p = 0.0007]. Higher LOY percentage (≥75%) was associated with greater likelihood of having somatic mutations (p = 0.0009) and a higher number of these mutations (p = 0.0002). Our findings indicate that ≥75% LOY in marrow is associated with increased likelihood of molecular alterations in genes commonly seen in myeloid neoplasia and with morphologic features of MDS. These observations suggest that ≥75% LOY in bone marrow should be considered an MDS-associated cytogenetic aberration

    Immunohistochemical Detection of MYC-driven Diffuse Large B-Cell Lymphomas

    Get PDF
    Diffuse large B cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease. A small subset of DLBCLs has translocations involving the MYC locus and an additional group has a molecular signature resembling Burkitt lymphoma (mBL). Presently, identification of such cases by morphology is unreliable and relies on cytogenetic or complex molecular methods such as gene transcriptional profiling. Herein, we describe an immunohistochemical (IHC) method for identifying DLBCLs with increased MYC protein expression. We tested 77 cases of DLBCL and identified 15 cases with high MYC protein expression (nuclear staining in >50% of tumor cells). All MYC translocation positive cases had increased MYC protein expression by this IHC assay. In addition, gene set enrichment analysis (GSEA) of the DLBCL transcriptional profiles revealed that tumors with increased MYC protein expression (regardless of underlying MYC translocation status) had coordinate upregulation of MYC target genes, providing molecular confirmation of the IHC results. We then generated a molecular classifier derived from the MYC IHC results in our cases and employed it to successfully classify mBLs from two previously reported independent case series, providing additional confirmation that the MYC IHC results identify clinically important subsets of DLBCLs. Lastly, we found that DLBCLs with high MYC protein expression had inferior overall survival when treated with R-CHOP. In conclusion, the IHC method described herein can be used to readily identify the biologically and clinically distinct cases of MYC-driven DLBCL, which represent a clinically significant subset of DLBCL cases due to their inferior overall survival
    • …
    corecore