585 research outputs found

    Nicotine-induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signaling and CaMKII.

    Get PDF
    Extracellular signal-regulated kinase (ERK) is activated in vivo in a number of brain areas by nicotine and other drugs of abuse. Here we show that nicotine stimulation of cultured mouse cortical neurons leads to a robust induction of ERK phosphorylation that is dependent on nicotine concentration and duration of exposure. Calcium/calmodulin-dependent protein kinase II activity is necessary for nicotine-induced ERK phosphorylation and neither cAMP-dependent protein kinase or protein kinase C appear to be involved. Activity of glutamate receptors, L-type voltage-gated calcium channels, and voltage-gated sodium channels are also required for nicotine-induced ERK phosphorylation. Nicotine-induced ERK phosphorylation was inhibited by high concentrations of mecamylamine, however it was not blocked by other broad nicotinic acetylcholine receptor (nAChR) inhibitors (including hexamethonium and chlorisondamine) or nAChR subtype selective inhibitors (such as methyllycaconitine, alpha-bungarotoxin, dihydro-beta-erythroidine, and α-conotoxin Au1B). In accord with these pharmacological results, nicotine-induced ERK phosphorylation was normal in primary cultures made from β2 or α7 nAChR subunit knockout mice. The α3/beta4 nAChR agonist cytisine did not induce ERK phosphorylation suggesting that α3/β4 nAChRs were not involved in this process. Taken together, these data define a necessary role for glutamatergic signaling and calcium/calmodulin-dependent protein kinase II in nicotine-induced ERK phosphorylation in cortical neurons and do not provide evidence for the involvement of classical nAChRs

    Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons

    Get PDF
    © 2020. Published by The Company of Biologists Ltd. Both the establishment of neuronal polarity and axonal growth are crucial steps in the development of the nervous system. The local translation of mRNAs in the axon provides precise regulation of protein expression, and is now known to participate in axon development, pathfinding and synaptic formation and function. We have investigated the role of miR-26a in early stage mouse primary cortical neuron development. We show that micro-RNA-26a-5p (miR-26a) is highly expressed in neuronal cultures, and regulates both neuronal polarity and axon growth. Using compartmentalised microfluidic neuronal cultures, we identified a local role for miR-26a in the axon, where the repression of local synthesis of GSK3β controls axon development and growth. Removal of this repression in the axon triggers local translation of GSK3β protein and subsequent transport to the soma, where it can impact axonal growth. These results demonstrate how the axonal miR-26a can regulate local protein translation in the axon to facilitate retrograde communication to the soma and amplify neuronal responses, in a mechanism that influences axon development

    Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system

    Get PDF
    Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons

    Caspase-8-mediated PAR-4 cleavage is required for TNFα-induced apoptosis

    Get PDF
    The tumor suppressor protein prostate apoptosis response-4 (PAR-4) is silenced in a subset of human cancers and its down-regulation serves as a mechanism for cancer cell survival following chemotherapy. PAR-4 re-expression selectively causes apoptosis in cancer cells but how its pro-apoptotic functions are controlled and executed precisely is currently unknown. We demonstrate here that UV-induced apoptosis results in a rapid caspase-dependent PAR-4 cleavage at EEPD131¯G, a sequence that was preferentially recognized by caspase-8. To investigate the effect on cell growth for this cleavage event we established stable cell lines that express wild-type-PAR-4 or the caspase cleavage resistant mutant PAR-4 D131G under the control of a doxycycline-inducible promoter. Induction of the wild-type protein but not the mutant interfered with cell proliferation, predominantly through induction of apoptosis. We further demonstrate that TNFα-induced apoptosis leads to caspase-8-dependent PAR-4-cleavage followed by nuclear accumulation of the C-terminal PAR-4 (132-340) fragment, which then induces apoptosis. Taken together, our results indicate that the mechanism by which PAR-4 orchestrates the apoptotic process requires cleavage by caspase-8

    Producción de radicales hidroxilo en sangre en pacientes ancianos hipertensos

    Get PDF
    En el complejo y multicausal proceso que lleva a la hipertensión esencial, los radicales libres parecen jugar un papel clave, particularmente en la regulación local del lecho capilar. Además de la producción de ion superóxido en la célula endotelial, existen otros factores de producción de radicales libres, especialmente el radical hidroxilo, aun cuando la hipertensión esté medicada y clínicamente controlada. Dado que si bien se han estudiado las defensas antioxidantes no se ha abordado todavía la generación de radicales libres en sangre en pacientes hipertensos, en el presente trabajo se estudió la producción del radical hidroxilo en sangre total en pacientes hipertensos controlados, mayores de 65 años, sin otra enfermedad y se compararon los niveles obtenidos con individuos de las mismas características, algunos de ellos hipertensos, que participaban en un programa de ejercicio y controlaban su dieta desde el punto de vista calórico. La producción del radical hidroxilo se determinó por la hidroxilación del salicilato, determinando la concentración del derivado 2,3 di-hidroxibenzoico (2,3-DHBA) por técnicas de cromatografía líquida de alta performance con detección electroquímica. Las concentraciones de 2,3-DHBA luego de la interacción de la sangre con la molécula de salicilato en tubo fueron significativamente mayores en los pacientes hipertensos que en los individuos controles. En los individuos hipertensos que realizaban ejercicios se observó una tendencia a una menor producción de radicales hidroxilo. De acuerdo con estos datos, la hipertensión esencial, aun medicada, se acompañaría de una producción elevada de radicales hidroxilo por los elementos formes de la sangre, que el ejercicio y la dieta tienden a disminuir. Aunque no podemos hablar de estrés oxidativo ya que no se determinó el estado de las defensas antioxidantes, es probable que estos radicales, si no son neutralizados, contribuyan a la enfermedad vascular que se observa en la hipertensión esencial. Estos resultados se ubicarían en la línea de investigación que propende a un control activo de la producción radicalaria aumentada en la hipertensión, además de la medicación antihipertensiva

    Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves

    Get PDF
    Neurons have highlighted the needs for decentralized gene expression and specific RNA function in somato-dendritic and axonal compartments, as well as in intercellular communication via extracellular vesicles (EVs). Despite advances in miRNA biology, the identity and regulatory capacity of other small non-coding RNAs (sncRNAs) in neuronal models and local subdomains has been largely unexplored. We identified a highly complex and differentially localized content of sncRNAs in axons and EVs during early neuronal development of cortical primary neurons and in adult axons in vivo. This content goes far beyond miRNAs and includes most known sncRNAs and precisely processed fragments from tRNAs, sno/snRNAs, Y RNAs and vtRNAs. Although miRNAs are the major sncRNA biotype in whole-cell samples, their relative abundance is significantly decreased in axons and neuronal EVs, where specific tRNA fragments (tRFs and tRHs/tiRNAs) mainly derived from tRNAs Gly-GCC, Val-CAC and Val-AAC predominate. Notably, although 5ʹ-tRHs compose the great majority of tRNA-derived fragments observed in vitro, a shift to 3ʹ-tRNAs is observed in mature axons in vivo. The existence of these complex sncRNA populations that are specific to distinct neuronal subdomains and selectively incorporated into EVs, equip neurons with key molecular tools for spatiotemporal functional control and cell-to-cell communication

    Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus

    Get PDF
    We have previously shown that activation of nicotinic acetylcholine receptors (nAChRs) enhanced long-term potentiation (LTP) in the rat dentate gyrus in vitro via activation of α7 nAChR. In the present studies, mechanisms underlying the acute and chronic nicotinic enhancement of LTP were examined. In particular, the involvement of activation of intracellular kinases was examined using selective kinase antagonists, and the effects of enhancing cholinergic function with positive allosteric modulators of the α7 nAChR and with acetylcholinesterase (AChE) inhibitors were also investigated. Activation of extracellular signal-regulated kinase (ERK) and cAMP-dependent protein kinase (PKA) was found to be involved in the induction of the acute nicotinic enhancement of LTP, although not control LTP. In contrast, activation of the tyrosine kinase Src, Ca2+-calmodulin-dependent protein kinase II, Janus kinase 2 and p38 mitogen-activated protein kinase was not involved in the acute nicotinic enhancement of LTP, although Src activation was necessary for control LTP. Moreover, activation of phosphoinositide 3-kinase was involved in the acute nicotinic enhancement of LTP to a much lesser extent than in control LTP. Chronic nicotine enhancement of LTP was found to be dependent on PKA, ERK and Src kinases. Acute nicotinic enhancement of LTP was occluded by chronic nicotine treatment. The positive allosteric modulator PNU-120596 was found to strongly reduce the threshold for nicotinic enhancement of LTP, an affect mediated via the α7 nAChR as it was blocked by the selective antagonist methyllycaconitine. The AChE inhibitors tacrine and physostigmine enhanced control LTP

    Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration.

    Get PDF
    Wallerian degeneration of physically injured axons involves a well-defined molecular pathway linking loss of axonal survival factor NMNAT2 to activation of pro-degenerative protein SARM1. Manipulating the pathway through these proteins led to the identification of non-axotomy insults causing axon degeneration by a Wallerian-like mechanism, including several involving mitochondrial impairment. Mitochondrial dysfunction is heavily implicated in Parkinson's disease, Charcot-Marie-Tooth disease, hereditary spastic paraplegia and other axonal disorders. However, whether and how mitochondrial impairment activates Wallerian degeneration has remained unclear. Here, we show that disruption of mitochondrial membrane potential leads to axonal NMNAT2 depletion in mouse sympathetic neurons, increasing the substrate-to-product ratio (NMN/NAD) of this NAD-synthesising enzyme, a metabolic fingerprint of Wallerian degeneration. The mechanism appears to involve both impaired NMNAT2 synthesis and reduced axonal transport. Expression of WLDS and Sarm1 deletion both protect axons after mitochondrial uncoupling. Blocking the pathway also confers neuroprotection and increases the lifespan of flies with Pink1 loss-of-function mutation, which causes severe mitochondrial defects. These data indicate that mitochondrial impairment replicates all the major steps of Wallerian degeneration, placing it upstream of NMNAT2 loss, with the potential to contribute to axon pathology in mitochondrial disorders
    corecore