69 research outputs found

    Effects of Bentonite Activation Methods on Chitosan Loading Capacity

    Get PDF
    The adsorption capacity of bentonite clay for heavy metal removal from wastewater can be significantly enhanced by a high loading of chitosan on the surface. In order to enhance the chitosan loading, we tested activating bentonite clay by three methods prior to chitosan loading: sulfuric acid, calcination, and microwave treatments. Meanwhile, several parameters during chitosan loading, namely the initial chitosan concentration, stirring speed, reaction time, temperature, and pH value were investigated. Our results indicate that chitosan is attached to bentonite clay through intercalation and surface adsorption according to X-ray Diffraction (XRD), Scanning Eelectron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. The maximum chitosan loading on 200-mesh raw bentonite clay (126.30 mg/L) was achieved under the following conditions: the initial chitosan concentration of 1000 mg/L, the stirring speed of 200 rpm, pH of 4.9, 60 min of reaction time, and temperature of 30 °C. The chitosan loading was further increased to 256.30, 233.70, and 208.83 mg/g, when using bentonite clay activated through 6 min of microwave irradiation (800 W), 10 % sulfuric acid treatment, and calcinations at 600 °C, respectively. When the chitosan loading was increased from 34.76 to 233.7 mg/g, the removal percentages of Cu(II), Cr(VI), and Pb(II) were improved, respectively from 78.90 to 95.5 %, from 82.22 to 98.74 %, from 60.09 to 86.18 %. Copyright © 2018 BCREC Group. All rights reserved Received: 14th March 2017; Revised: 17th July 2017; Accepted: 18th July 2017; Available online: 22nd January 2018; Published regularly: 2 April 2018 How to Cite: Yu, T., Qu, C., Fan, D., Xu, R. (2018). Effects of Bentonite Activation Methods on Chitosan Loading Capacity. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 14-23 (doi:10.9767/bcrec.13.1.1040.14-23

    Effects of Bentonite Activation Methods on Chitosan Loading Capacity

    Get PDF
    The adsorption capacity of bentonite clay for heavy metal removal from wastewater can be significantly enhanced by a high loading of chitosan on the surface. In order to enhance the chitosan loading, we tested activating bentonite clay by three methods prior to chitosan loading: sulfuric acid, calcination, and microwave treatments. Meanwhile, several parameters during chitosan loading, namely the initial chitosan concentration, stirring speed, reaction time, temperature, and pH value were investigated. Our results indicate that chitosan is attached to bentonite clay through intercalation and surface adsorption according to X-ray Diffraction (XRD), Scanning Eelectron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. The maximum chitosan loading on 200-mesh raw bentonite clay (126.30 mg/L) was achieved under the following conditions: the initial chitosan concentration of 1000 mg/L, the stirring speed of 200 rpm, pH of 4.9, 60 min of reaction time, and temperature of 30 °C. The chitosan loading was further increased to 256.30, 233.70, and 208.83 mg/g, when using bentonite clay activated through 6 min of microwave irradiation (800 W), 10 % sulfuric acid treatment, and calcinations at 600 °C, respectively. When the chitosan loading was increased from 34.76 to 233.7 mg/g, the removal percentages of Cu(II), Cr(VI), and Pb(II) were improved, respectively from 78.90 to 95.5 %, from 82.22 to 98.74 %, from 60.09 to 86.18 %.

    Near-Infrared (NIR) Luminescent Homoleptic Lanthanide Salen Complexes Ln(4)(Salen)(4) (Ln = Nd, Yb Or Er)

    Get PDF
    The series of homoleptic tetranuclear [Ln(4)(L)(2)(HL)(2)(NO3)(2)(OH)(2)]center dot 2(NO3) (Ln = Nd, 1; Ln = Yb, 2; Ln = Er, 3; Ln = Gd, 4) have been self-assembled from the reaction of the Salen-type Schiff-base ligand H2L with Ln(NO3)(3)center dot 6H(2)O (Ln = Nd, Yb, Er or Gd), respectively (H2L: N, N'-bis(salicylidene) cyclohexane-1,2-diamine). The result of their photophysical properties shows that the strong and characteristic NIR luminescence for complexes 1 and 2 with emissive lifetimes in microsecond ranges are observed and the sensitization arises from the excited state (both (LC)-L-1 and (LC)-L-3) of the Salen-type Schiff-base ligand with the flexible linker.National Natural Science Foundation 21173165, 20871098Ministry of Education of China NCET-10-0936Higher Education of China 20116101110003State Key Laboratory of Structure Chemistry 20100014Education Committee Foundation of Shaanxi Province 11JK0588Hong Kong Research Grants Council, P. R. of China HKBU 202407, FRG/06-07/II-16)Hong Kong Research Grants Council, Robert A. Welch Foundation F-816Texas Higher Education Coordinating Board ARP 003658-0010-2006Petroleum Research Fund 47014-AC5Chemistr

    Dietary phytochemicals: As a potential natural source for treatment of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a common neurodegenerative disease, which seriously impairs human health and life. At present, scientists have proposed more than a dozen hypotheses about the pathogenesis of AD, including the tau propagation hypothesis. However, the exact ultimate pathogenic factor of AD remains unknown. Based on the current hypotheses, some anti-AD drugs (e.g., donepezil and Ketamine) have been developed and used in clinical treatment, which fall into two main categories, acetylcholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate (NMDA) receptor antagonists, the former representative drug is donepezil, and the latter representative drug is memantine. Since these drugs have undesirable side effects, it is necessary to find safer alternatives for AD treatment. Interestingly, dietary phytochemicals have the advantages of wide source, safety, and high biological activity, which is the natural route for screening anti-AD drugs. In this study, several representatives’ dietary phytochemicals with anti-AD effect, including resveratrol, lycopene, gallic acid, berberine, ginsenoside Rg1, pseudoginsenoside-F11, ginsenoside Rh2, artemisinin, and torularhodin were selected from the published data over the last 10 years and their potential molecular mechanisms and clinical applications reviewed in the treatment of AD

    Protopanaxadiol and Protopanaxatriol-Type Saponins Ameliorate Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus in High-Fat Diet/Streptozocin-Induced Mice

    Get PDF
    Ginsenoside is a major active component of ginseng, which exhibits various pharmacological properties such as hepatoprotection, tumor suppression and diabetes resistance. In this study, the anti-diabetic effects of protopanaxadiol (PPD) and protopanaxatriol (PPT)-type saponins were explored and compared in high-fat diet/streptozocin-induced type 2 diabetes mellitus (T2DM) mice. Our results showed that low or high dose (50 mg/kg bodyweight or 150 mg/kg bodyweight) PPD and PPT significantly reduced fasting blood glucose, improved glucose tolerance and insulin resistance in T2DM mice. PPD and PPT also regulated serum lipid-related markers such as reduced total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol in T2DM mice. In addition, PPD and PPT dramatically ameliorated the inflammatory responses by suppressing the secretion of pro-inflammatory cytokines like tumor necrosis factor-alpha and interleukin-6 in serum level and gene expression in liver level, and improved the antioxidant capacity by increasing the superoxide dismutase and decreasing malondialdehyde levels in the serum of T2DM mice. Moreover, the anti-diabetic effect of PPD and PPT appeared to be partially mediated by the suppression of hepatic metabolism genes expression such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase, as well as facilitating lipid metabolism genes expression such as microsomal TG transfer protein in the liver tissues of T2DM mice. Taken together, our results indicated that PPD and PPT might potentially act as natural anti-diabetic compounds to be used for preventing and treating the T2DM and its complications in the future

    Fabricating a novel HLC-hBMP2 fusion protein for the treatment of bone defects

    Get PDF
    Treating serious bone trauma with an osteo-inductive agent such as bone morphogenetic proteins (BMPs) has been considered as an optimized option when delivered via a collagen sponge (CS). Previous work has shown that the BMP concentration and release rate from approved CS carriers is difficult to control with precision. Here we presented the fabrication of a recombinant fusion protein from recombinant human-like collagen (HLC) and human BMP-2 (hBMP2). The fusion protein preserved the characteristic of HLC allowing the recombinant protein to be expressed in Yeast (such as Pichia pastoris GS115) and purified rapidly and easily with mass production after methanol induction. It also kept the stable properties of HLC and hBMP2 in the body fluid environment with good biocompatibility and no cytotoxicity. Moreover, the recombinant fusion protein fabricated a vertical through-hole structure with improved mechanical properties, and thus facilitated migration of bone marrow mesenchymal stem cells (MSCs) into the fusion materials. Furthermore, the fusion protein degraded and released hBMP-2 in vivo allowing osteoinductive activity and the enhancement of utilization rate and the precise control of the hBMP2 release. This fusion protein when applied to cranial defects in rats was osteoinductively active and improved bone repairing enhancing the repairing rate 3.5- fold and 4.2- fold when compared to the HLC alone and the control, respectively. There were no visible inflammatory reactions, infections or extrusions around the implantation sites observed. Our data strongly suggests that this novel recombinant fusion protein could be more beneficial in the treatment of bone defects than the simple superposition of the hBMP2/collagen sponge

    Ginsenoside CK Inhibits Hypoxia-Induced Epithelial–Mesenchymal Transformation through the HIF-1α/NF-κB Feedback Pathway in Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is a kind of malignant tumor with high morbidity and mortality rates worldwide. Epithelial–mesenchymal transformation (EMT) is crucial for HCC progression and prognosis. Characteristics of the tumor microenvironment, such as hypoxia, and excessive activation of the NF-κB signaling pathway have been identified as the key inducers of EMT in HCC. In our study, we verified the crosstalk between HIF-1α signaling and NF-κB pathway and their effects on EMT in HCC cells. The results show that CoCl2-induced hypoxia could promote IκB phosphorylation to activate NF-κB signaling and vice versa. Moreover, we found that ginsenoside CK, a metabolite of protopanaxadiol saponins, could inhibit the proliferation and colony formation of different HCC cell lines. Furthermore, ginsenoside CK could impair the metastatic potential of HCC cell lines under hypoxic conditions. Mechanistically, ginsenoside CK suppressed HIF-1α/NF-κB signaling and expression level of EMT-related proteins and cytokines in hypoxia-induced or TNFα-stimulated HCC cell lines. An in vivo study revealed that the oral delivery of ginsenoside CK could inhibit the growth of xenograft tumors and block HIF-1α and NF-κB signaling as well as EMT marker expression. Our study suggests that ginsenoside CK is a potential therapy for HCC patients that functions by targeting the HIF-1α/NF-κB crosstalk

    Exploring the potential of the recombinant human collagens for biomedical and clinical: a short review

    Get PDF
    Natural animal collagen and its recombinant collagen are favorable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is a fundamental key to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen named recombinant human-like collagen (HLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. HLC was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property and the ability of mass production, HLC has been widely considered to use in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. For comparison and providing basic background information about the techniques, we start with recombinant human collagens. In the end, future improvements in using HLC are also discussed
    corecore