2,494 research outputs found

    Transport equation for 2D electron liquid under microwave radiation plus magnetic field and the Zero Resistance State

    Full text link
    A general transport equation for the center of mass motion is constructed to study transports of electronic system under uniform magnetic field and microwave radiation. The equation is applied to study 2D electron system in the limit of weak disorder where negative resistance instability is observed when the radiation field is strong enough. A solution of the transport equation with spontaneous AC current is proposed to explain the experimentally observed Radiation-Induced Zero Resistance State.Comment: 9 pages, 1 figur

    Enhanced visibility of graphene: effect of one-dimensional photonic crystal

    Full text link
    We investigate theoretically the light reflectance of a graphene layer prepared on the top of one-dimensional Si/SiO2 photonic crystal (1DPC). It is shown that the visibility of the graphene layers is enhanced greatly when 1DPC is added, and the visibility can be tuned by changing the incident angle and light wavelengths. This phenomenon is caused by the absorption of the graphene layer and the enhanced reflectance of the 1DPC.Comment: 4 pages, 4 figures. published, ApplPhysLett_91_18190

    Hadronic origin of prompt high-energy emission of gamma-ray bursts revisited: in the case of a limited maximum proton energy

    Full text link
    The high-energy (> 100MeV) emission observed by Fermi-LAT during the prompt phase of some luminous gamma-ray bursts (GRBs) could arise from the cascade induced by interactions between accelerated protons and the radiation field of GRBs. The photomeson process, which is usually suggested to operate in such a hadronic explanation, requires a rather high proton energy (> 10^17eV) for an efficient interaction. However, whether GRBs can accelerate protons to such a high energy is far from guaranteed, although they have been suggested as the candidate source for ultrahigh-energy cosmic rays. In this work, we revisit the hadronic model for the prompt high-energy emission of GRBs with a smaller maximum proton energy than the usually adopted value estimated from the Bohm condition. In this case, the Bethe-Heitler pair production process becomes comparably important or even dominates over the photomeson process. We show that with a relatively low maximum proton energy with a Lorentz factor of 10^5 in the comoving frame, the cascade emission can still reproduce various types of high-energy spectrum of GRBs. For most GRBs without high-energy emission detected, the maximum proton energy could be even lower and relax the constraints on the parameters of GRB jet resulting from the fact of non-detection of GRB neutrinos by IceCube.Comment: 36 pages, 13 figures, accepted for publication in Ap
    • …
    corecore