34,493 research outputs found

    Wilson-Loop Characterization of Inversion-Symmetric Topological Insulators

    Full text link
    The ground state of translationally-invariant insulators comprise bands which can assume topologically distinct structures. There are few known examples where this distinction is enforced by a point-group symmetry alone. In this paper we show that 1D and 2D insulators with the simplest point-group symmetry - inversion - have a Z≥Z^{\geq} classification. In 2D, we identify a relative winding number that is solely protected by inversion symmetry. By analysis of Berry phases, we show that this invariant has similarities with the first Chern class (of time-reversal breaking insulators), but is more closely analogous to the Z2Z_2 invariant (of time-reversal invariant insulators). Implications of our work are discussed in holonomy, the geometric-phase theory of polarization, the theory of maximally-localized Wannier functions, and in the entanglement spectrum.Comment: The updated version is accepted in Physical Review

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Image Properties of Embedded Lenses

    Full text link
    We give analytic expressions for image properties of objects seen around point mass lenses embedded in a flat Λ\LambdaCDM universe. An embedded lens in an otherwise homogeneous universe offers a more realistic representation of the lens's gravity field and its associated deflection properties than does the conventional linear superposition theory. Embedding reduces the range of the gravitational force acting on passing light beams thus altering all quantities such as deflection angles, amplifications, shears and Einstein ring sizes. Embedding also exhibits the explicit effect of the cosmological constant on these same lensing quantities. In this paper we present these new results and demonstrate how they can be used. The effects of embedding on image properties, although small i.e., usually less than a fraction of a percent, have a more pronounced effect on image distortions in weak lensing where the effects can be larger than 10%. Embedding also introduces a negative surface mass density for both weak and strong lensing, a quantity altogether absent in conventional Schwarzschild lensing. In strong lensing we find only one additional quantity, the potential part of the time delay, which differs from conventional lensing by as much as 4%, in agreement with our previous numerical estimates.Comment: 17 pages, 6 figure

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2∗D_2^*, D0′D'_0, and D1′D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure

    Enhanced visibility of graphene: effect of one-dimensional photonic crystal

    Full text link
    We investigate theoretically the light reflectance of a graphene layer prepared on the top of one-dimensional Si/SiO2 photonic crystal (1DPC). It is shown that the visibility of the graphene layers is enhanced greatly when 1DPC is added, and the visibility can be tuned by changing the incident angle and light wavelengths. This phenomenon is caused by the absorption of the graphene layer and the enhanced reflectance of the 1DPC.Comment: 4 pages, 4 figures. published, ApplPhysLett_91_18190

    Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry

    Full text link
    We perform a complete classification of two-band \bk\cdot\mathbf{p} theories at band crossing points in 3D semimetals with nn-fold rotation symmetry and broken time-reversal symmetry. Using this classification, we show the existence of new 3D topological semimetals characterized by C4,6C_{4,6}-protected double-Weyl nodes with quadratic in-plane (along kx,yk_{x,y}) dispersion or C6C_6-protected triple-Weyl nodes with cubic in-plane dispersion. We apply this theory to the 3D ferromagnet HgCr2_2Se4_4 and confirm it is a double-Weyl metal protected by C4C_4 symmetry. Furthermore, if the direction of the ferromagnetism is shifted away from the [001]- to the [111]-axis, the double-Weyl node splits into four single Weyl nodes, as dictated by the point group S6S_6 of that phase. Finally, we discuss experimentally relevant effects including splitting of multi-Weyl nodes by applying CnC_n breaking strain and the surface Fermi arcs in these new semimetals.Comment: 4+ pages, 2 figures, 1 tabl

    DsJ+(2632)D_{sJ}^+(2632): An Excellent Candidate of Tetraquarks

    Full text link
    We analyze various possible interpretations of the narrow state DsJ(2632)D_{sJ}(2632) which lies 100 MeV above threshold. This interesting state decays mainly into DsηD_s \eta instead of D0K+D^0 K^+. If this relative branching ratio is further confirmed by other experimental groups, we point out that the identification of DsJ(2632)D_{sJ}(2632) either as a csˉc\bar s state or more generally as a 3ˉ{\bf {\bar 3}} state in the SU(3)FSU(3)_F representation is probably problematic. Instead, such an anomalous decay pattern strongly indicates DsJ(2632)D_{sJ}(2632) is a four quark state in the SU(3)FSU(3)_F 15{\bf 15} representation with the quark content 122(dsdˉ+sddˉ+suuˉ+usuˉ−2sssˉ)cˉ{1\over 2\sqrt{2}} (ds\bar{d}+sd\bar{d}+su\bar{u}+us\bar{u}-2ss\bar{s})\bar{c}. We discuss its partners in the same multiplet, and the similar four-quark states composed of a bottom quark BsJ0(5832)B_{sJ}^0(5832). Experimental searches of other members especially those exotic ones are strongly called for
    • …
    corecore