3,455 research outputs found
Symmetry-breaking transitions in networks of nonlinear circuit elements
We investigate a nonlinear circuit consisting of N tunnel diodes in series,
which shows close similarities to a semiconductor superlattice or to a neural
network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like
system. The tunnel diodes are coupled globally through a load resistor. We find
complex bifurcation scenarios with symmetry-breaking transitions that generate
multiple fixed points off the synchronization manifold. We show that multiply
degenerate zero-eigenvalue bifurcations occur, which lead to multistable
current branches, and that these bifurcations are also degenerate with a Hopf
bifurcation. These predicted scenarios of multiple branches and degenerate
bifurcations are also found experimentally.Comment: 32 pages, 11 figures, 7 movies available as ancillary file
Интерактивная обработка изображений, получаемых посредством лазерного монитора в режиме реального времени
В ходе исследования необходимо было создать устройство позиционирования объекта в системе лазерного монитора.
В процессе исследования проводилось исследование алгоритмов определения резкости изображения. На основе выбранного метода был разработан алгоритм автоматической фокусировки изображения. Также был разработан алгоритм системы слежения за объектом на основе алгоритма нормированной кросскорреляции. В результате исследования удалось снизить искажения, вносимые оптической системой лазерного монитора и активной оптической средой, и организовать систему автоматической фокусировки изображения и систему слежения, позволяющую отслеживать перемещение объекта наблюдения с точностью до 1 пикселя.In the study, it was necessary to create a device object positioning system for the laser monitor.
The study surveyed algorithms determine the sharpness of the image. Based on the selected method algorithm for automatic focus of the image was developed. There was also designeded a tracking system for the object of the algorithm based on normalized cross-correlation method. The study was able to reduce the distortions introduced by the optical system of the laser and monitor the active optical medium, and to organize a system of auto focus and image tracking system to track the movement of the object of observation up to 1 pixel
Synchronisation in networks of delay-coupled type-I excitable systems
We use a generic model for type-I excitability (known as the SNIPER or SNIC
model) to describe the local dynamics of nodes within a network in the presence
of non-zero coupling delays. Utilising the method of the Master Stability
Function, we investigate the stability of the zero-lag synchronised dynamics of
the network nodes and its dependence on the two coupling parameters, namely the
coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model
for type-II excitability), there are parameter ranges where the stability of
synchronisation depends on the coupling strength and delay time. One important
implication of these results is that there exist complex networks for which the
adding of inhibitory links in a small-world fashion may not only lead to a loss
of stable synchronisation, but may also restabilise synchronisation or
introduce multiple transitions between synchronisation and desynchronisation.
To underline the scope of our results, we show using the Stuart-Landau model
that such multiple transitions do not only occur in excitable systems, but also
in oscillatory ones.Comment: 10 pages, 9 figure
Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions
This report reviews the study of open heavy-flavour and quarkonium production
in high-energy hadronic collisions, as tools to investigate fundamental aspects
of Quantum Chromodynamics, from the proton and nucleus structure at high energy
to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is
given to the lessons learnt from LHC Run 1 results, which are reviewed in a
global picture with the results from SPS and RHIC at lower energies, as well as
to the questions to be addressed in the future. The report covers heavy flavour
and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus
collisions. This includes discussion of the effects of hot and cold strongly
interacting matter, quarkonium photo-production in nucleus-nucleus collisions
and perspectives on the study of heavy flavour and quarkonium with upgrades of
existing experiments and new experiments. The report results from the activity
of the SaporeGravis network of the I3 Hadron Physics programme of the European
Union 7th Framework Programme
Unraveling biogeochemical phosphorus dynamics in hyperarid Mars‐analogue soils using stable oxygen isotopes in phosphate
With annual precipitation less than 20 mm and extreme UV intensity, the Atacama Desert in northern Chile has long been utilized as an analogue for recent Mars. In these hyperarid environments, water and biomass are extremely limited, and thus, it becomes difficult to generate a full picture of biogeochemical phosphate‐water dynamics. To address this problem, we sampled soils from five Atacama study sites and conducted three main analyses—stable oxygen isotopes in phosphate, enzyme pathway predictions, and cell culture experiments. We found that high sedimentation rates decrease the relative size of the organic phosphorus pool, which appears to hinder extremophiles. Phosphoenzyme and pathway prediction analyses imply that inorganic pyrophosphatase is the most likely catalytic agent to cycle P in these environments, and this process will rapidly overtake other P utilization strategies. In these soils, the biogenic δ18O signatures of the soil phosphate (δ18OPO4) can slowly overprint lithogenic δ18OPO4 values over a timescale of tens to hundreds of millions of years when annual precipitation is more than 10 mm. The δ18OPO4 of calcium‐bound phosphate minerals seems to preserve the δ18O signature of the water used for biogeochemical P cycling, pointing toward sporadic rainfall and gypsum hydration water as key moisture sources. Where precipitation is less than 2 mm, biological cycling is restricted and bedrock δ18OPO4 values are preserved. This study demonstrates the utility of δ18OPO4 values as indicative of biogeochemical cycling and hydrodynamics in an extremely dry Mars‐analogue environment
One Hundred Years of Philosophy of Science: The View from Munich
These days, a number of philosophers of science indulge in lamenting about a crisis of their discipline. They complain about its loss of relevance, and bemoan the mar gi na lization of their dis cipline in the philosophical community and in the wider academia , Hardcastle and Richardson ). The Munich take on the philosophy of science does not succumb to this temptation. According to it, philosophy of science is well and alive. In Carlos Ulises Moulines’s Die Entwicklung der modernen Wissen schaftstheorie Eine historische Einführung the word “crisis” is used only in reference to the 1940s when clas sical logical positivism encountered some dif fi culties in dealing with problems concerning veri fi cation, the ana ly tic/synthetic distinction, and similar conundrums. For Moulines, “crisis” is not a word that applies to contemporary philosophy of scienc
Electromagnetic probes
We introduce the seminal developments in the theory and experiments of
electromagnetic probes for the study of the dynamics of relativistic heavy ion
collisions and quark gluon plasma.Comment: 47 pages, 33 Figures; Lectures delivered by Dinesh K. Srivastava at
QGP Winter School (QGPWS08) at Jaipur, India, February 1-3, 200
- …