3 research outputs found

    Differences in BNT126b2 and ChAdOx1 Homologous Vaccination Antibody Response among Teachers in Poznan, Poland

    No full text
    Children are among the best vectors to spread respiratory viruses, including emerging variants of SARS-CoV-2 due to the asymptomatic or relatively mild course of infection and simultaneously high titres of pathogens in the respiratory tract. Therefore, individuals who have constant contact with children, e.g., teachers should be vaccinated against COVID-19 as essential workers within the first phases of a vaccination campaign. In Poland, primary and secondary school teachers were vaccinated with ChAdOx1 from February 2021 with a three month interval between the two doses, while lecturers at medical universities, who are simultaneously healthcare workers, received the BNT126b2 vaccine from December 2020 with three weeks between the first and second doses. The aim of this study was to compare the antibody responses at two weeks and three months after vaccination and to estimate the vaccine effectiveness against COVID-19 among infection-naïve teachers vaccinated with mRNA and a vector vaccine. We found that the anti-SARS-CoV-2 spike protein antibodies were significantly higher among the lecturers but antibody waning was slower among the schoolteachers. However, those vaccinated with ChAdOx1 complained significantly more often of vaccine side effects. In addition, during the three months after the second vaccine dose no study participants were infected with SARS-CoV-2. The BNT126b2 vaccine gave higher antibody titres in comparison with ChAdOx1 but protection against COVID-19 in both cases was similar. Moreover, we did not find any anti-SARS-CoV-2 nucleoprotein antibodies at two weeks as well as at three months after vaccination among the study participants, which shows a very high vaccine effectiveness in the occupational group with a high SARS-CoV-2-infection risk

    RNA Secondary Structure as a First Step for Rational Design of the Oligonucleotides towards Inhibition of Influenza A Virus Replication

    No full text
    Influenza is an important research subject around the world because of its threat to humanity. Influenza A virus (IAV) causes seasonal epidemics and sporadic, but dangerous pandemics. A rapid antigen changes and recombination of the viral RNA genome contribute to the reduced effectiveness of vaccination and anti-influenza drugs. Hence, there is a necessity to develop new antiviral drugs and strategies to limit the influenza spread. IAV is a single-stranded negative sense RNA virus with a genome (viral RNA—vRNA) consisting of eight segments. Segments within influenza virion are assembled into viral ribonucleoprotein (vRNP) complexes that are independent transcription-replication units. Each step in the influenza life cycle is regulated by the RNA and is dependent on its interplay and dynamics. Therefore, viral RNA can be a proper target to design novel therapeutics. Here, we briefly described examples of anti-influenza strategies based on the antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA) and catalytic nucleic acids. In particular we focused on the vRNA structure-function relationship as well as presented the advantages of using secondary structure information in predicting therapeutic targets and the potential future of this field

    The Longitudinal Analysis on the Anti-SARS-CoV-2 Antibodies among Healthcare Workers in Poland—Before and after BNT126b2 mRNA COVID-19 Vaccination

    No full text
    One of the groups most vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is healthcare workers (HCWs) who have direct contact with suspected and confirmed coronavirus diseases 2019 (COVID-19) patients. Therefore, this study aimed to (i) conduct a longitudinal analysis of the seroprevalence of SARS-CoV-2 infection among HCWs working in two healthcare units (HCUs) in Poland and (ii) identify anti-SARS-CoV-2 IgG antibody (Ab) response factors following infection and anti-COVID-19 vaccination. The overall seroprevalence increased from 0% at baseline in September 2020 to 37.8% in December 2020. It reached 100% in February 2021 after BNT126b2 (Pfizer New York, NY, USA/BioNTech Mainz, Germany) full vaccination and declined to 94.3% in September 2021. We observed significant differences in seroprevalence between the tested high- and low-risk infection HCUs, with the highest seropositivity among the midwives and nurses at the Gynecology and Obstetrics Ward, who usually have contact with non-infectious patients and may not have the proper training, practice and personal protective equipment to deal with pandemic infections, such as SARS-CoV-2. We also found that anti-SARS-CoV-2 Ab levels after coronavirus infection were correlated with disease outcomes. The lowest Ab levels were found among HCWs with asymptomatic coronavirus infections, and the highest were found among HCWs with severe COVID-19. Similarly, antibody response after vaccination depended on previous SARS-CoV-2 infection and its course: the highest anti-SARS-CoV-2 Ab levels were found in vaccinated HCWs after severe COVID-19. Finally, we observed an approximately 90–95% decrease in anti-SARS-CoV-2 Ab levels within seven months after vaccination. Our findings show that HCWs have the highest risk of SARS-CoV-2 infection, and due to antibody depletion, extra protective measures should be undertaken. In addition, in the context of the emergence of new pathogens with pandemic potential, our results highlight the necessity for better infectious disease training and regular updates for the low infection risk HCUs, where the HCWs have only occasional contact with infectious patients
    corecore