88 research outputs found

    The role of the brassinosteroid associated kinase (BAK1) in plant cell defense [abstract]

    Get PDF
    Abstract only availablePlants are able to resist bacterial and fungal infection by recognizing invading organisms outside the cell and then activating defense responses inside the cell. The first line of defense against invading organisms is known as the innate immune response. It is based on the recognition of pathogen-associated molecular patterns (PAMPs) found on pathogens (such as bacteria and fungi) by the plant cell. PAMPs induce defense responses through interaction with specific receptor proteins that are located on the membrane surface of the plant host cell. A well known PAMP is flg22, a 22-amino acid peptide derived from flagellum, the building block of bacterial flagellum which is important for the bacteria's mobility that enables it to move to the inside of the cell. In A. thaliana, the Flagellin Sensing 2 (FLS2) protein is the cell surface receptor that recognizes the bacterial PAMP flg22. Recognition of flg22 by FLS2 causes the plant to produce reactive oxygen molecules (ROS), which is an early defense response. Other plant defense responses include seedling growth inhibition and deposition of defense factors in the plant cell wall such as callose. In collaboration with Dr. Rathjen's lab, our lab has recently shown that the cell surface protein BAK1 (Brassinosteroid associated kinase 1) forms a complex with FLS2 after elicitation with flg22. The goal of this study was to characterize the role of BAK1 in innate immune responses to gain a better understanding in how BAK1 contributes to plant innate immunity against pathogen infections. In the future, we hope to use the knowledge gained from our studies and translate it into crop species such as tomato or rice to make these crop species more resistant against pathogen infection.Food for 21st Century, University of Missour

    Secure Anonymous Conferencing in Quantum Networks

    Get PDF
    Users of quantum networks can securely communicate via so-called (quantum) conference key agreement—making their identities publicly known. In certain circumstances, however, communicating users demand anonymity. Here, we introduce a security framework for anonymous conference key agreement with different levels of anonymity, which is inspired by the ε-security of quantum key distribution. We present efficient and noise-tolerant protocols exploiting multipartite Greenberger-Horne-Zeilinger (GHZ) states and prove their security in the finite-key regime. We analyze the performance of our protocols in noisy and lossy quantum networks and compare with protocols that only use bipartite entanglement to achieve the same functionalities. Our simulations show that GHZ-based protocols can outperform protocols based on bipartite entanglement and that the advantage increases for protocols with stronger anonymity requirements. Our results strongly advocate the use of multipartite entanglement for cryptographic tasks involving several users

    Secure Anonymous Conferencing in Quantum Networks

    Get PDF
    Users of quantum networks can securely communicate via so-called (quantum) conference key agreement—making their identities publicly known. In certain circumstances, however, communicating users demand anonymity. Here, we introduce a security framework for anonymous conference key agreement with different levels of anonymity, which is inspired by the ε-security of quantum key distribution. We present efficient and noise-tolerant protocols exploiting multipartite Greenberger-Horne-Zeilinger (GHZ) states and prove their security in the finite-key regime. We analyze the performance of our protocols in noisy and lossy quantum networks and compare with protocols that only use bipartite entanglement to achieve the same functionalities. Our simulations show that GHZ-based protocols can outperform protocols based on bipartite entanglement and that the advantage increases for protocols with stronger anonymity requirements. Our results strongly advocate the use of multipartite entanglement for cryptographic tasks involving several users

    Mitochondrial tRNALeu(UUR) mutation m.3302A > G presenting as childhood-onset severe myopathy: threshold determination through segregation study

    Get PDF
    Mitochondrial tRNALeu(UUR) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNALeu(UUR) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected familie

    A novel mitochondrial ATP6 frameshift mutation causing isolated complex V deficiency, ataxia and encephalomyopathy

    Get PDF
    We describe a novel frameshift mutation in the mitochondrial ATP6 gene in a 4-year-old girl associated with ataxia, microcephaly, developmental delay and intellectual disability. A heteroplasmic frameshift mutation in the MT-ATP6 gene was confirmed in the patient's skeletal muscle and blood. The mutation was not detectable in the mother's DNA extracted from blood or buccal cells. Enzymatic and oxymetric analysis of the mitochondrial respiratory system in the patients' skeletal muscle and skin fibroblasts demonstrated an isolated complex V deficiency. Native PAGE with subsequent immunoblotting for complex V revealed impaired complex V assembly and accumulation of ATPase subcomplexes. Whilst northern blotting confirmed equal presence of ATP8/6 mRNA, metabolic S-35-labelling of mitochondrial translation products showed a severe depletion of the ATP6 protein together with aberrant translation product accumulation. In conclusion, this novel isolated complex V defect expands the clinical and genetic spectrum of mitochondrial defects of complex V deficiency. Furthermore, this work confirms the benefit of native PAGE as an additional diagnostic method for the identification of OXPHOS defects, as the presence of complex V subcomplexes is associated with pathogenic mutations of mtDNA. (C) 2017 Elsevier Masson SAS. All rights reserved.Peer reviewe

    Mitochondrial leucine tRNA level and PTCD1 are regulated in response to leucine starvation

    Get PDF
    Pentatricopeptide repeat domain protein 1 (PTCD1) is a novel human protein that was recently shown to decrease the levels of mitochondrial leucine tRNAs. The physiological role of this regulation, however, remains unclear. Here we show that amino acid starvation by leucine deprivation significantly increased the mRNA steady-state levels of PTCD1 in human hepatocarcinoma (HepG2) cells. Amino acid starvation also increased the mitochondrially encoded leucine tRNA (tRNALeu(CUN)) and the mRNA for the mitochondrial leucyl-tRNA synthetase (LARS2). Despite increased PTCD1 mRNA steady-state levels, amino acid starvation decreased PTCD1 on the protein level. Decreasing PTCD1 protein concentration increases the stability of the mitochondrial leucine tRNAs, tRNALeu(CUN) and tRNALeu(UUR) as could be shown by RNAi experiments against PTCD1. Therefore, it is likely that decreased PTCD1 protein contributes to the increased tRNALeu(CUN) levels in amino acid-starved cells. The stabilisation of the mitochondrial leucine tRNAs and the upregulation of the mitochondrial leucyl-tRNA synthetase LARS2 might play a role in adaptation of mitochondria to amino acid starvation

    Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms

    Get PDF
    The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms

    Role of AMP-Activated Protein Kinase on Steroid Hormone Biosynthesis in Adrenal NCI-H295R Cells

    Get PDF
    Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity

    Molecular and biochemical characterisation of a novel mutation in POLG associated with Alpers syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA polymerase γ (<it>POLG</it>) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the <it>POLG </it>gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes.</p> <p>Methods</p> <p>mtDNA content in various tissues (fibroblasts, muscle and liver) was quantified using quantitative PCR (qPCR). OXPHOS activities in the same tissues were assessed using spectrophotometric methods and catalytic stain of BN-PAGE.</p> <p>Results</p> <p>We characterise a novel splice site mutation in <it>POLG </it>found <it>in trans </it>with the p.A467T mutation in a 3.5 years old boy with valproic acid induced acute liver failure (Alpers-Huttenlocher syndrome). These mutations result in a tissue specific depletion of the mtDNA which correlates with the OXPHOS-activities.</p> <p>Conclusions</p> <p>mtDNA depletion can be expressed in a high tissue-specific manner and confirms the need to analyse primary tissue. Furthermore<it>, POLG </it>analysis optimises clinical management in the early stages of disease and reinforces the need for its evaluation before starting valproic acid treatment.</p
    corecore