777 research outputs found
Status Report of the CAST Experiment
This report describes the activities in the CAST experiment since the previous SPSC in April 2008
Digging into Axion Physics with (Baby)IAXO
Dark matter searches have been ongoing for three decades; the lack of a positive discovery of the main candidate, the WIMP, after dedicated efforts, has put axions and axion-like particles in the spotlight. The three main techniques employed to search for them complement each other well in covering a wide range in the parameter space defined by the axion decay constant and the axion mass. The International AXion Observatory (IAXO) is an international collaboration planning to build the fourth generation axion helioscope, with an unparalleled expected sensitivity and discovery potential. The distinguishing characteristic of IAXO is that it will feature a magnet that is designed to maximise the relevant parameters in sensitivity and which will be equipped with X-ray focusing devices and detectors that have been developed for axion physics. In this paper, we review aspects that motivate IAXO and its prototype, BabyIAXO, in the axion, and ALPs landscape. As part of this Special Issue, some emphasis is given on Spanish participation in the project, of which CAPA (Centro de Astroparticulas y Fisica de Altas Energias of the Universidad de Zaragoza) is a strong promoter
Performance of the Micromegas detector in the CAST experiment
The gaseous Micromegas detector designed for the CERN Axion search experiment
CAST, operated smoothly during Phase-I, which included the 2003 and 2004
running periods. It exhibited linear response in the energy range of interest
(1-10keV), good spatial sensitivity and energy resolution (15-19% FWHM at
5.9keV)as well as remarkable stability. The detector's upgrade for the 2004
run, supported by the development of advanced offline analysis tools, improved
the background rejection capability, leading to an average rate 5x10^-5
counts/sec/cm^2/keV with 94% cut efficiency. Also, the origin of the detected
background was studied with a Monte Carlo simulation, using the GEANT4 package.Comment: Prepared for PSD7: The Seventh International Conference on Position
Sensitive Detectors, Liverpool, United Kingdom, 12-16 Sep. 200
IoT Enabled Sensory Monitoring System for Fog Optimal Resource Provisioning Method in Health Monitoring System
Fog is data management and analytics service. In this paper gains and most effective novel approach to provide IoT enabled services in healthcare application using Fog Computing. In this research the data is collected from Google Scholar, Science Director and MEDLINE database. IoT based Fog Computing techniques are proposed for delivering quality of services to the user. Optimal Resource Provisioning method is proposed to find edges, service level agreements and administration services for IoT client. The DeepQ residue information processing technique is applied for connecting data centre of the cloud and computing paradigms technique is finding the depth reference of Fog levels. The proposed Optimal resource provisioning algorithm is examining the dataset and TensorFlow tool is used for simulating environment. Fog computing layer consist of IoT sensor data inputs, data centres for the cloud and connected layers for simulations. The Deep belief network is generated based on above inputs using 256 X 256 X 3 layer system and 5000 trained data, 1000 test data are taken for simulations. Each dataset simulation is recording using supervised and unsupervised learning methods. Based on above results IoT enable Fog Computing data management and analytics systems provided 95% accuracy and the compared with existing computing techniques our proposed systems shows better efficiency with respect to safety and convenience
The discrimination capabilities of Micromegas detectors at low energy
The latest generation of Micromegas detectors show a good energy resolution,
spatial resolution and low threshold, which make them idoneous in low energy
applications. Two micromegas detectors have been built for dark matter
experiments: CAST, which uses a dipole magnet to convert axion into detectable
x-ray photons, and MIMAC, which aims to reconstruct the tracks of low energy
nuclear recoils in a mixture of CF4 and CHF3. These readouts have been
respectively built with the microbulk and bulk techniques, which show different
gain, electron transmission and energy resolutions. The detectors and the
operation conditions will be described in detail as well as their
discrimination capabilities for low energy photons will be discussed.Comment: To be published in the proceedings of the TIPP2011 conference
(Physics Procedia
Improved induction of anti-melanoma T cells by adenovirus-5/3 fiber modification to target human DCs
To mount a strong anti-tumor immune response, non T cell inflamed (cold) tumors may require combination treatment encompassing vaccine strategies preceding checkpoint inhibition. In vivo targeted delivery of tumor-associated antigens (TAA) to dendritic cells (DCs), relying on the natural functions of primary DCs in situ, represents an attractive vaccination strategy. In this study we made use of a full-length MART-1 expressing C/B-chimeric adenoviral vector, consisting of the Ad5 capsid and the Ad3 knob (Ad5/3), which we previously showed to selectively transduce DCs in human skin and lymph nodes. Our data demonstrate that chimeric Ad5/3 vectors encoding TAA, and able to target human DCs in situ, can be used to efficiently induce expansion of functional tumor-specific CD8⁺ effector T cells, either from a naïve T cell pool or from previously primed T cells residing in the melanoma-draining sentinel lymph nodes (SLN). These data support the use of Ad3-knob containing viruses as vaccine vehicles for in vivo delivery. "Off-the-shelf" DC-targeted Ad vaccines encoding TAA could clearly benefit future immunotherapeutic approaches
- …