444 research outputs found
Modeling pedestrian evacuation movement in a swaying ship
With the advance in living standard, cruise travel has been rapidly expanding
around the world in recent years. The transportation of passengers in water has
also made a rapid development. It is expected that ships will be more and more
widely used. Unfortunately, ship disasters occurred in these years caused
serious losses. It raised the concern on effectiveness of passenger evacuation
on ships. The present study thus focuses on pedestrian evacuation features on
ships. On ships, passenger movements are affected by the periodical water
motion and thus are quite different from the characteristic when walking on
static horizontal floor. Taking into consideration of this special feature, an
agent-based pedestrian model is formulized and the effect of ship swaying on
pedestrian evacuation efficiency is investigated. Results indicated that the
proposed model can be used to quantify the special evacuation process on ships.Comment: Traffic and Granular Flow'15, At Delft, the Netherland
Sialic Acids on Tumor Cells Modulate IgA Therapy by Neutrophils via Inhibitory Receptors Siglec-7 and Siglec-9
Immunotherapy with targeted therapeutic antibodies is often ineffective in long-term responses in cancer patients due to resistance mechanisms such as overexpression of checkpoint molecules. Similar to T lymphocytes, myeloid immune cells express inhibitory checkpoint receptors that interact with ligands overexpressed on cancer cells, contributing to treatment resistance. While CD47/SIRPα-axis inhibitors in combination with IgA therapy have shown promise, complete tumor eradication remains a challenge, indicating the presence of other checkpoints. We investigated hypersialylation on the tumor cell surface as a potential myeloid checkpoint and found that hypersialylated cancer cells inhibit neutrophil-mediated tumor killing through interactions with sialic acid-binding immunoglobulin-like lectins (Siglecs). To enhance antibody-dependent cellular cytotoxicity (ADCC) using IgA as therapeutic, we explored strategies to disrupt the interaction between tumor cell sialoglycans and Siglecs expressed on neutrophils. We identified Siglec-9 as the primary inhibitory receptor, with Siglec-7 also playing a role to a lesser extent. Blocking Siglec-9 enhanced IgA-mediated ADCC by neutrophils. Concurrent expression of multiple checkpoint ligands necessitated a multi-checkpoint-blocking approach. In certain cancer cell lines, combining CD47 blockade with desialylation improved IgA-mediated ADCC, effectively overcoming resistance that remained when blocking only one checkpoint interaction. Our findings suggest that a combination of CD47 blockade and desialylation may be necessary to optimize cancer immunotherapy, considering the upregulation of checkpoint molecules by tumor cells to evade immune surveillance
Perception of Nuclear Energy and Coal in France and the Netherlands
This study focuses on the perception of large scale application of nuclear energy and coal in the Netherlands and France. The application of these energy-sources and the risks and benefits are judged differently by various group in society. In Europe, France has the highest density of nuclear power plants and the Netherlands has one of the lowest. In both countries scientists and social scientists completed a questionnaire assessing the perception of the large scale application of both energy sources. Furthermore, a number of variables relating to the socio cultural and political circumstances were measured. The results indicate that the French had a higher risk perception and a more negative attitude toward nuclear power than the Dutch. But they also assess the benefits of the use of nuclear power to be higher. Explanations for these differences are discussed
Experimental study of pedestrian flow through a bottleneck
In this work the results of a bottleneck experiment with pedestrians are
presented in the form of total times, fluxes, specific fluxes, and time gaps. A
main aim was to find the dependence of these values from the bottleneck width.
The results show a linear decline of the specific flux with increasing width as
long as only one person at a time can pass, and a constant value for larger
bottleneck widths. Differences between small (one person at a time) and wide
bottlenecks (two persons at a time) were also found in the distribution of time
gaps.Comment: accepted for publication in J. Stat. Mec
Copper-Heparin Inhalation Therapy To Repair Emphysema: A Scientific Rationale
Current pharmacotherapy of chronic obstructive pulmonary disease (COPD)
aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to
reduce disease progression, however, are still lacking. Furthermore, COPD medications
showed less favorable effects in emphysema than in other COPD phenotypes. Elastin fibers
are reduced and disrupted, whereas collagen levels are increased in emphysematous lungs.
Protease/antiprotease imbalance has historically been regarded as the sole cause of emphysema. However, it is nowadays appreciated that emphysema may also be provoked by
perturbations in the sequential repair steps following elastolysis. Essentiality of fibulin-5
and lysyl oxidase-like 1 in the elastin restoration process is discussed, and it is argued that
copper deficiency is a plausible reason for failing elastin repair in emphysema patients.
Since copper-dependent lysyl oxidases crosslink elastin as well as collagen fibers, copper
supplementation stimulates accumulation of both proteins in the extracellular matrix.
Restoration of abnormal elastin fibers in emphysematous lungs is favorable, whereas
stimulating pulmonary fibrosis formation by further increasing collagen concentrations
and organization is detrimental. Heparin inhibits collagen crosslinking while stimulating
elastin repair and might therefore be the ideal companion of copper for emphysema
patients. Efficacy and safety considerations may lead to a preference of pulmonary administration of copper-heparin over systemic administration
Traffic Instabilities in Self-Organized Pedestrian Crowds
In human crowds as well as in many animal societies, local interactions among
individuals often give rise to self-organized collective organizations that
offer functional benefits to the group. For instance, flows of pedestrians
moving in opposite directions spontaneously segregate into lanes of uniform
walking directions. This phenomenon is often referred to as a smart collective
pattern, as it increases the traffic efficiency with no need of external
control. However, the functional benefits of this emergent organization have
never been experimentally measured, and the underlying behavioral mechanisms
are poorly understood. In this work, we have studied this phenomenon under
controlled laboratory conditions. We found that the traffic segregation
exhibits structural instabilities characterized by the alternation of organized
and disorganized states, where the lifetime of well-organized clusters of
pedestrians follow a stretched exponential relaxation process. Further analysis
show that the inter-pedestrian variability of comfortable walking speeds is a
key variable at the origin of the observed traffic perturbations. We show that
the collective benefit of the emerging pattern is maximized when all
pedestrians walk at the average speed of the group. In practice, however, local
interactions between slow- and fast-walking pedestrians trigger global
breakdowns of organization, which reduce the collective and the individual
payoff provided by the traffic segregation. This work is a step ahead toward
the understanding of traffic self-organization in crowds, which turns out to be
modulated by complex behavioral mechanisms that do not always maximize the
group's benefits. The quantitative understanding of crowd behaviors opens the
way for designing bottom-up management strategies bound to promote the
emergence of efficient collective behaviors in crowds.Comment: Article published in PLoS Computational biology. Freely available
here:
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100244
Copper-Heparin Inhalation Therapy To Repair Emphysema:A Scientific Rationale
Current pharmacotherapy of chronic obstructive pulmonary disease (COPD) aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to reduce disease progression, however, are still lacking. Furthermore, COPD medications showed less favorable effects in emphysema than in other COPD phenotypes. Elastin fibers are reduced and disrupted, whereas collagen levels are increased in emphysematous lungs. Protease/antiprotease imbalance has historically been regarded as the sole cause of emphysema. However, it is nowadays appreciated that emphysema may also be provoked by perturbations in the sequential repair steps following elastolysis. Essentiality of fibulin-5 and lysyl oxidase-like 1 in the elastin restoration process is discussed, and it is argued that copper deficiency is a plausible reason for failing elastin repair in emphysema patients. Since copper-dependent lysyl oxidases crosslink elastin as well as collagen fibers, copper supplementation stimulates accumulation of both proteins in the extracellular matrix. Restoration of abnormal elastin fibers in emphysematous lungs is favorable, whereas stimulating pulmonary fibrosis formation by further increasing collagen concentrations and organization is detrimental. Heparin inhibits collagen crosslinking while stimulating elastin repair and might therefore be the ideal companion of copper for emphysema patients. Efficacy and safety considerations may lead to a preference of pulmonary administration of copper-heparin over systemic administration
- âŠ