823 research outputs found

    On gauge unification in Type I/I' models

    Full text link
    We discuss whether the (MSSM) unification of gauge couplings can be accommodated in string theories with a low (TeV) string scale. This requires either power law running of the couplings or logarithmic running extremely far above the string scale. In both cases it is difficult to arrange for the multiplet structure to give the MSSM result. For the case of power law running there is also enhanced sensitivity to the spectrum at the unification scale. For the case of logarithmic running there is a fine tuning problem associated with the light closed string Kaluza Klein spectrum which requires gauge mediated supersymmetry breaking on the ``visible'' brane with a dangerously low scale of supersymmetry breaking. Evading these problems in low string scale models requires a departure from the MSSM structure, which would imply that the success of gauge unification in the MSSM is just an accident.Comment: 10 pages, LaTeX, 2 figures; minor change

    Dense Quarks, and the Fermion Sign Problem, in a SU(N) Matrix Model

    Full text link
    We study the effect of dense quarks in a SU(N) matrix model of deconfinement. For three or more colors, the quark contribution to the loop potential is complex. After adding the charge conjugate loop, the measure of the matrix integral is real, but not positive definite. In a matrix model, quarks act like a background Z(N) field; at nonzero density, the background field also has an imaginary part, proportional to the imaginary part of the loop. Consequently, while the expectation values of the loop and its complex conjugate are both real, they are not equal. These results suggest a possible approach to the fermion sign problem in lattice QCD.Comment: 9 pages, 3 figure

    Spatiotemporal discrete multicolor solitons

    Full text link
    We have found various families of two-dimensional spatiotemporal solitons in quadratically nonlinear waveguide arrays. The families of unstaggered odd, even and twisted stationary solutions are thoroughly characterized and their stability against perturbations is investigated. We show that the twisted and even solutions display instability, while most of the odd solitons show remarkable stability upon evolution.Comment: 18 pages,7 figures. To appear in Physical Review

    BRAHMS Overview

    Full text link
    A brief review of BRAHMS measurements of bulk particle production in RHIC Au+Au collisions at sNN=200GeV\sqrt{s_{NN}}=200GeV is presented, together with some discussion of baryon number transport. Intermediate pTp_{T} measurements in different collision systems (Au+Au, d+Au and p+p) are also discussed in the context of jet quenching and saturation of the gluon density in Au ions at RHIC energies. This report also includes preliminary results for identified particles at forward rapidities in d+Au and Au+Au collisions.Comment: 8 pages 6 figures, Invited plenary talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2005), Salt Lake City, Kolkata, India, 8-12 Feb 200

    Pomeron loop and running coupling effects in high energy QCD evolution

    Get PDF
    Within the framework of a (1+1)-dimensional model which mimics evolution and scattering in QCD at high energy, we study the influence of the running of the coupling on the high-energy dynamics with Pomeron loops. We find that the particle number fluctuations are strongly suppressed by the running of the coupling, by at least one order of magnitude as compared to the case of a fixed coupling, for all the rapidities that we have investigated, up to Y=200. This reflects the slowing down of the evolution by running coupling effects, in particular, the large rapidity evolution which is required for the formation of the saturation front via diffusion. We conclude that, for all energies of interest, processes like deep inelastic scattering or forward particle production can be reliably studied within the framework of a mean-field approximation (like the Balitsky-Kovchegov equation) which includes running coupling effects.Comment: 23 pages, 8 figure

    THE EFFECT OF ORGANIC FERTILIZATION ON FRUIT PRODUCTION AND QUALITY OF TOMATOES GROWN IN THE SOLAR

    Get PDF
    The purpose of this study was to observe the effect of organic fertilization on the production and quality of tomato fruits grown in early culture in the solar. The influence of this fertilizer was followed in 2017 in a tomato crop in southwestern Romania (Almăj-Dolj). The Reyana hybrid was studied which was foliarly fertilized with the organic product Folicist in the doses of 0.5 l/ha, 1.0 l/ha and 1.5 l/ha. The parameters traced were: production, humidity, soluble dry substance, titratable acidity, vitamin C content, total polyphenols and carotenes as well as fruit pH. The highest yield of 12.76 t/ha was obtained at a dose of 1.0 l/ha and also at the same dose were recorded the best quality parameters of the fruit, such as: S.D.S. was 4.7 oBx, humidity of 90.3%, titre acidity of 1.33 mg/NaOH/100g f.m., vitamin C of 24.3 mg/100g f.m., total polyphenols 66.4 mg/100g f.m., total carotenes 51.3 mg/100g f.m. and pH 4.49. These results show that an adequate fertilization of plants with nutrients substances is crucial to achieving high yields and good-tasting fruits.Â

    The K/pi ratio from condensed Polyakov loops

    Get PDF
    We perform a field-theoretical computation of hadron production in large systems at the QCD confinement phase transition associated with restoration of the Z(3) global symmetry. This occurs from the decay of a condensate for the Polyakov loop. From the effective potential for the Polyakov loop, its mass just below the confinement temperature T_c is in between the vacuum masses of the pion and that of the kaon. Therefore, due to phase-space restrictions the number of produced kaons is roughly an order of magnitude smaller than that of produced pions, in agreement with recent results from collisions of gold ions at the BNL-RHIC. From its mass, we estimate that the Polyakov loop condensate is characterized by a (spatial) correlation scale of 1/m_\ell ~ 1/2 fm. For systems of deconfined matter of about that size, the free energy may not be dominated by a condensate for the Polyakov loop, and so the process of hadronization may be qualitatively different as compared to large systems. In that vein, experimental data on hadron abundance ratios, for example K/pi, in high-multiplicity pp events at high energies should be very interesting.Comment: 7 pages, 4 figures; discussion of the two-point function of Polyakov Loops in small versus large systems adde

    Polyakov Loops versus Hadronic States

    Get PDF
    The order parameter for the pure Yang-Mills phase transition is the Polyakov loop which encodes the symmetries of the Z_N center of the SU(N) gauge group. On the other side the physical degrees of freedom of any asymptotically free gauge theory are hadronic states. Using the Yang-Mills trace anomaly and the exact Z_N symmetry we construct a model able to communicate to the hadrons the information carried by the order parameter.Comment: RevTex4 2-col., 6 pages, 2 figures. Typos fixed and added a paragraph in the conclusion
    • 

    corecore