7,412 research outputs found
Mathematical modelling in animal nutrition: a centenary review
A centenary review presents an opportunity to ponder over the processes of concept development and give thought to future directions. The current review aims to ascertain the ontogeny of current concepts, underline the connection between ideas and people and pay tribute to those pioneers who have contributed significantly to modelling in animal nutrition. Firstly, the paper draws a brief portrait of the use of mathematics in agriculture and animal nutrition prior to 1925. Thereafter, attention turns towards the historical development of growth modelling, feed evaluation systems and animal response models. Introduction of the factorial and compartmental approaches into animal nutrition is noted along with the particular branches of mathematics encountered in various models. Furthermore, certain concepts, especially bioenergetics or the heat doctrine, are challenged and alternatives are reviewed. The current state of knowledge of animal nutrition modelling results mostly from the discernment and unceasing efforts of our predecessors rather than serendipitous discoveries. The current review may stimulate those who wish for greater understanding and appreciation
Elements of Design for Containers and Solutions in the LinBox Library
We describe in this paper new design techniques used in the \cpp exact linear
algebra library \linbox, intended to make the library safer and easier to use,
while keeping it generic and efficient. First, we review the new simplified
structure for containers, based on our \emph{founding scope allocation} model.
We explain design choices and their impact on coding: unification of our matrix
classes, clearer model for matrices and submatrices, \etc Then we present a
variation of the \emph{strategy} design pattern that is comprised of a
controller--plugin system: the controller (solution) chooses among plug-ins
(algorithms) that always call back the controllers for subtasks. We give
examples using the solution \mul. Finally we present a benchmark architecture
that serves two purposes: Providing the user with easier ways to produce
graphs; Creating a framework for automatically tuning the library and
supporting regression testing.Comment: 8 pages, 4th International Congress on Mathematical Software, Seoul :
Korea, Republic Of (2014
Sterilizable photomultiplier tubes Final report
Environment, static acceleration, vibration, shock, gas contamination, and life tests in development of sterilizable photomultipliers for space program
Improved sterilizable multiplier phototubes Final report
Development of sterilizable multiplier phototube for scintillation counte
Hilbert-Post completeness for the state and the exception effects
In this paper, we present a novel framework for studying the syntactic
completeness of computational effects and we apply it to the exception effect.
When applied to the states effect, our framework can be seen as a
generalization of Pretnar's work on this subject. We first introduce a relative
notion of Hilbert-Post completeness, well-suited to the composition of effects.
Then we prove that the exception effect is relatively Hilbert-Post complete, as
well as the "core" language which may be used for implementing it; these proofs
have been formalized and checked with the proof assistant Coq.Comment: Siegfried Rump (Hamburg University of Technology), Chee Yap (Courant
Institute, NYU). Sixth International Conference on Mathematical Aspects of
Computer and Information Sciences , Nov 2015, Berlin, Germany. 2015, LNC
Do we need a zero pure time preference or the risk of climate catastrophes to justify a 2C global warming target ?
This paper confronts the wide political support for the 2C objective of global increase in temperature, reaffirmed in Copenhagen, with the consistent set of hypotheses on which it relies. It explains why neither an almost zero pure time preference nor concerns about catastrophic damages in case of uncontrolled global warming are prerequisites for policy decisions preserving the possibility of meeting a 2C target. It rests on an optimal stochastic control model balancing the costs and benefits of climate policies resolved sequentially in order to account for the arrival of new information (the RESPONSE model). This model describes the optimal abatement pathways for 2,304 worldviews, combining hypotheses about growth rates, baseline emissions, abatement costs, pure time preference, damages, and climate sensitivity. It shows that 26 percent of the worldviews selecting the 2C target are not characterized by one of the extreme assumptions about pure time preference or climate change damages.Climate Change Mitigation and Green House Gases,Climate Change Economics,Science of Climate Change,Global Environment Facility,Environment and Energy Efficiency
- …