179 research outputs found

    Fingertip force control during bimanual object lifting in hemiplegic cerebral palsy

    Get PDF
    In the present study we examined unimanual and bimanual fingertip force control during grasping in children with hemiplegic cerebral palsy (CP). Participants lifted, transported and released an object with one hand or both hands together in order to examine the effect on fingertip force control for each hand separately and to determine whether any benefit exists for the affected hand when it performed the task concurrently with the less-affected hand. Seven children with hemiplegic CP performed the task while their movement and fingertip force control were measured. In the bimanual conditions, the weight of the instrumented objects was equal or unequal. The durations of the all temporal phases for the less-affected hand were prolonged during bimanual control compared to unimanual control. We observed close synchrony of both hands when the task was performed with both hands, despite large differences in duration between both hands when they performed separately. There was a marginal benefit for two of the five force related variables for the affected hand (grip force at onset of load force, and peak grip force) when it transported the object simultaneously with the less-affected hand. Collectively, these results corroborate earlier findings of reaching studies that showed slowing down of the less-affected hand when it moved together with the affected hand. A new finding that extends these studies is that bimanual tasks may have the potential to facilitate force control of the affected hand. The implications of these findings for recent rehabilitative therapies in children with CP that make use of bimanual training are discussed

    Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene

    Get PDF
    Branch points and flexures in the high pressure arterial system have long been recognized as sites of unusually high turbulence and consequent stress in humans are foci for atherosclerotic lesions. We show that mice that are homozygous for a null mutation in the gene encoding an endogenous antiinflammatory cytokine, interleukin 1 receptor antagonist (IL-1ra), develop lethal arterial inflammation involving branch points and flexures of the aorta and its primary and secondary branches. We observe massive transmural infiltration of neutrophils, macrophages, and CD4(+) T cells. Animals appear to die from vessel wall collapse, stenosis, and organ infarction or from hemorrhage from ruptured aneurysms. Heterozygotes do not die from arteritis within a year of birth but do develop small lesions, which suggests that a reduced level of IL-1ra is insufficient to fully control inflammation in arteries. Our results demonstrate a surprisingly specific role for IL-1ra in the control of spontaneous inflammation in constitutively stressed artery walls, suggesting that expression of IL-1 is likely to have a significant role in signaling artery wall damage

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Global conformal anomaly in N=2 string

    Full text link
    We show the existence of a global anomaly in the one-loop graphs of N=2 string theory, defined by sewing tree amplitudes, unless spacetime supersymmetry is imposed. The anomaly is responsible for the non-vanishing maximally helicity violating amplitudes. The supersymmetric completion of the N=2 string spectrum is formulated by extending the previous cohomological analysis with an external spin factor; the target space-time spin-statistics of these individual fields in a selfdual background are compatible with previous cohomological analysis as fields of arbitrary spin may be bosonized into one another. We further analyze duality relations between the open and closed string amplitudes and demonstrate this in the supersymmetric extension of the target space-time theory through the insertion of zero-momentum operators.Comment: 29 pages, LaTeX, one figur

    Modelling Human Regulatory Variation in Mouse: Finding the Function in Genome-Wide Association Studies and Whole-Genome Sequencing

    Get PDF
    An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant–harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation

    First-trimester ultrasound detection of fetal heart anomalies: systematic review and meta-analysis

    Get PDF
    Objectives: To determine the diagnostic accuracy of ultrasound at 11–14 weeks' gestation in the detection of fetal cardiac abnormalities and to evaluate factors that impact the detection rate. Methods: This was a systematic review of studies evaluating the diagnostic accuracy of ultrasound in the detection of fetal cardiac anomalies at 11–14 weeks' gestation, performed by two independent reviewers. An electronic search of four databases (MEDLINE, EMBASE, Web of Science Core Collection and The Cochrane Library) was conducted for studies published between January 1998 and July 2020. Prospective and retrospective studies evaluating pregnancies at any prior level of risk and in any healthcare setting were eligible for inclusion. The reference standard used was the detection of a cardiac abnormality on postnatal or postmortem examination. Data were extracted from the included studies to populate 2 × 2 tables. Meta-analysis was performed using a random-effects model in order to determine the performance of first-trimester ultrasound in the detection of major cardiac abnormalities overall and of individual types of cardiac abnormality. Data were analyzed separately for high-risk and non-high-risk populations. Preplanned secondary analyses were conducted in order to assess factors that may impact screening performance, including the imaging protocol used for cardiac assessment (including the use of color-flow Doppler), ultrasound modality, year of publication and the index of sonographer suspicion at the time of the scan. Risk of bias and quality assessment were undertaken for all included studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Results: The electronic search yielded 4108 citations. Following review of titles and abstracts, 223 publications underwent full-text review, of which 63 studies, reporting on 328 262 fetuses, were selected for inclusion in the meta-analysis. In the non-high-risk population (45 studies, 306 872 fetuses), 1445 major cardiac anomalies were identified (prevalence, 0.41% (95% CI, 0.39–0.43%)). Of these, 767 were detected on first-trimester ultrasound examination of the heart and 678 were not detected. First-trimester ultrasound had a pooled sensitivity of 55.80% (95% CI, 45.87–65.50%), specificity of 99.98% (95% CI, 99.97–99.99%) and positive predictive value of 94.85% (95% CI, 91.63–97.32%) in the non-high-risk population. The cases diagnosed in the first trimester represented 63.67% (95% CI, 54.35–72.49%) of all antenatally diagnosed major cardiac abnormalities in the non-high-risk population. In the high-risk population (18 studies, 21 390 fetuses), 480 major cardiac anomalies were identified (prevalence, 1.36% (95% CI, 1.20–1.52%)). Of these, 338 were detected on first-trimester ultrasound examination and 142 were not detected. First-trimester ultrasound had a pooled sensitivity of 67.74% (95% CI, 55.25–79.06%), specificity of 99.75% (95% CI, 99.47–99.92%) and positive predictive value of 94.22% (95% CI, 90.22–97.22%) in the high-risk population. The cases diagnosed in the first trimester represented 79.86% (95% CI, 69.89–88.25%) of all antenatally diagnosed major cardiac abnormalities in the high-risk population. The imaging protocol used for examination was found to have an important impact on screening performance in both populations (P < 0.0001), with a significantly higher detection rate observed in studies using at least one outflow-tract view or color-flow Doppler imaging (both P < 0.0001). Different types of cardiac anomaly were not equally amenable to detection on first-trimester ultrasound. Conclusions: First-trimester ultrasound examination of the fetal heart allows identification of over half of fetuses affected by major cardiac pathology. Future first-trimester screening programs should follow structured anatomical assessment protocols and consider the introduction of outflow-tract views and color-flow Doppler imaging, as this would improve detection rates of fetal cardiac pathology. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology

    Effect of skilled and unskilled training on nerve regeneration and functional recovery

    Get PDF
    The most disabling aspect of human peripheral nerve injuries, the majority of which affect the upper limbs, is the loss of skilled hand movements. Activity-induced morphological and electrophysiological remodeling of the neuromuscular junction has been shown to influence nerve repair and functional recovery. In the current study, we determined the effects of two different treatments on the functional and morphological recovery after median and ulnar nerve injury. Adult Wistar male rats weighing 280 to 330 g at the time of surgery (N = 8-10 animals/group) were submitted to nerve crush and 1 week later began a 3-week course of motor rehabilitation involving either “skilled” (reaching for small food pellets) or “unskilled” (walking on a motorized treadmill) training. During this period, functional recovery was monitored weekly using staircase and cylinder tests. Histological and morphometric nerve analyses were used to assess nerve regeneration at the end of treatment. The functional evaluation demonstrated benefits of both tasks, but found no difference between them (P > 0.05). The unskilled training, however, induced a greater degree of nerve regeneration as evidenced by histological measurement (P < 0.05). These data provide evidence that both of the forelimb training tasks used in this study can accelerate functional recovery following brachial plexus injury

    Children living with HIV in Europe: do migrants have worse treatment outcomes?

    Get PDF
    corecore