4,572 research outputs found

    Enhancement of the ν=5/2\nu = 5/2 Fractional Quantum Hall State in a Small In-Plane Magnetic Field

    Get PDF
    Using a 50-nm width, ultra-clean GaAs/AlGaAs quantum well, we have studied the Landau level filling factor ν=5/2\nu = 5/2 fractional quantum Hall effect in a perpendicular magnetic field B∼B \sim 1.7 T and determined its dependence on tilted magnetic fields. Contrary to all previous results, the 5/2 resistance minimum and the Hall plateau are found to strengthen continuously under an increasing tilt angle 0<θ<25∘0 < \theta < 25^\circ (corresponding to an in-plane magnetic field 0 << B∥B_\parallel <0.8< 0.8 T). In the same range of θ\theta the activation gaps of both the 7/3 and the 8/3 states are found to increase with tilt. The 5/2 state transforms into a compressible Fermi liquid upon tilt angle θ>60∘\theta > 60^\circ, and the composite fermion series [2+p/(2p±1)p/(2p\pm1)], p=p = 1, 2 can be identified. Based on our results, we discuss the relevance of a Skyrmion spin texture at ν=5/2\nu = 5/2 associated with small Zeeman energy in wide quantum wells, as proposed by Woˊ\acute{\text o}js etet alal., Phys. Rev. Lett. 104, 086801 (2010).Comment: 5+ pages, 3 figures, accepted for by Phy. Rev. Let

    Neumann Heat kernel monotonicity

    Full text link
    We prove that the diagonal of the transition probabilities for the d-dimensional Bessel processes on (0, 1], reflected at 1, which we denote by pRN(t,r,r)p_R^N(t, r,r), is an increasing function of r for d>2 and that this is false for d=2

    Cobordism of Morse functions on surfaces, the universal complex of singular fibers and their application to map germs

    Full text link
    We give a new and simple proof for the computation of the oriented and the unoriented fold cobordism groups of Morse functions on surfaces. We also compute similar cobordism groups of Morse functions based on simple stable maps of 3-manifolds into the plane. Furthermore, we show that certain cohomology classes associated with the universal complexes of singular fibers give complete invariants for all these cobordism groups. We also discuss invariants derived from hypercohomologies of the universal homology complexes of singular fibers. Finally, as an application of the theory of universal complexes of singular fibers, we show that for generic smooth map germs g: (R^3, 0) --> (R^2, 0) with R^2 being oriented, the algebraic number of cusps appearing in a stable perturbation of g is a local topological invariant of g.Comment: This is the version published by Algebraic & Geometric Topology on 7 April 200

    Training Diffusion Models with Reinforcement Learning

    Full text link
    Diffusion models are a class of flexible generative models trained with an approximation to the log-likelihood objective. However, most use cases of diffusion models are not concerned with likelihoods, but instead with downstream objectives such as human-perceived image quality or drug effectiveness. In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for such objectives. We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms, which we refer to as denoising diffusion policy optimization (DDPO), that are more effective than alternative reward-weighted likelihood approaches. Empirically, DDPO is able to adapt text-to-image diffusion models to objectives that are difficult to express via prompting, such as image compressibility, and those derived from human feedback, such as aesthetic quality. Finally, we show that DDPO can improve prompt-image alignment using feedback from a vision-language model without the need for additional data collection or human annotation.Comment: 20 pages, 12 figure

    Two State Behavior in a Solvable Model of β\beta-hairpin folding

    Full text link
    Understanding the mechanism of protein secondary structure formation is an essential part of protein-folding puzzle. Here we describe a simple model for the formation of the β\beta-hairpin, motivated by the fact that folding of a β\beta-hairpin captures much of the basic physics of protein folding. We argue that the coupling of ``primary'' backbone stiffness and ``secondary'' contact formation (similar to the coupling between the ``secondary'' and ``tertiary'' structure in globular proteins), caused for example by side-chain packing regularities, is responsible for producing an all-or-none 2-state β\beta-hairpin formation. We also develop a recursive relation to compute the phase diagram and single exponential folding/unfolding rate arising via a dominant transition state.Comment: Revised versio

    Sandpile groups and spanning trees of directed line graphs

    Get PDF
    We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph G and its directed line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and Kautz graphs.Comment: v2 has an expanded section on deletion/contraction for directed graphs, and a more detailed proof of Theorem 2.3. To appear in Journal of Combinatorial Theory A

    Quantum Relaxation of Magnetisation in Magnetic Particles

    Full text link
    At temperatures below the magnetic anisotropy energy, monodomain magnetic systems (small particles, nanomagnetic devices, etc.) must relax quantum mechanically. This quantum relaxation must be mediated by the coupling to both nuclear spins and phonons (and electrons if either particle or substrate is conducting. We analyze the effect of each of these couplings, and then combine them. Conducting systems can be modelled by a "giant Kondo" Hamiltonian, with nuclear spins added in as well. At low temperatures, even microscopic particles on a conducting substrate (containing only 10−5010-50 spins) will have their magnetisation frozen over millenia by a combination of electronic dissipation and the "degeneracy blocking" caused by nuclear spins. Raising the temperature leads to a sudden unblocking of the spin dynamics at a well defined temperature. Insulating systems are quite different. The relaxation is strongly enhanced by the coupling to nuclear spins. At short times the magnetisation of an ensemble of particles relaxes logarithmically in time, after an initial very fast decay; this relaxation proceeds entirely via the nuclear spins. At longer times phonons take over, but the decay rate is still governed by the temperature-dependent nuclear bias field acting on the particles - decay may be exponential or power-law depending on the temperature. The most surprising feature of the results is the pivotal role played by the nuclear spins. The results are relevant to any experiments on magnetic particles in which interparticle dipolar interactions are unimportant. They are also relevant to future magnetic device technology.Comment: 30 pages, RevTex, e:mail , Submitted to J.Low Temp.Phys. on 1 Nov. 199

    The atomic structure of large-angle grain boundaries Σ5\Sigma 5 and Σ13\Sigma 13 in YBa2Cu3O7−δ{\rm YBa_2Cu_3O_{7-\delta}} and their transport properties

    Full text link
    We present the results of a computer simulation of the atomic structures of large-angle symmetrical tilt grain boundaries (GBs) Σ5\Sigma 5 (misorientation angles \q{36.87}{^{\circ}} and \q{53.13}{^{\circ}}), Σ13\Sigma 13 (misorientation angles \q{22.62}{^{\circ}} and \q{67.38}{^{\circ}}). The critical strain level ϵcrit\epsilon_{crit} criterion (phenomenological criterion) of Chisholm and Pennycook is applied to the computer simulation data to estimate the thickness of the nonsuperconducting layer hn{\rm h_n} enveloping the grain boundaries. The hn{\rm h_n} is estimated also by a bond-valence-sum analysis. We propose that the phenomenological criterion is caused by the change of the bond lengths and valence of atoms in the GB structure on the atomic level. The macro- and micro- approaches become consistent if the ϵcrit\epsilon_{crit} is greater than in earlier papers. It is predicted that the symmetrical tilt GB Σ5\Sigma5 \theta = \q{53.13}{^{\circ}} should demonstrate a largest critical current across the boundary.Comment: 10 pages, 2 figure
    • …
    corecore