31 research outputs found

    TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication

    Get PDF
    Objective We investigated the mutational landscape of mammalian target of rapamycin (mTOR) signalling cascade in hepatocellular carcinomas (HCCs) with chronic HBV background, aiming to evaluate and delineate mutation-dependent mechanism of mTOR hyperactivation in hepatocarcinogenesis. Design We performed next-generation sequencing on human HCC samples and cell line panel. Systematic mutational screening of mTOR pathway-related genes was undertaken and mutant genes were evaluated based on their recurrence. Protein expressions of tuberous sclerosis complex (TSC)1, TSC2 and pRPS6 were assessed by immunohistochemistry in human HCC samples. Rapamycin sensitivity was estimated by colony-formation assay in HCC cell lines and the treatment was further tested using our patient-derived tumour xenograft (PDTX) models. Results We identified and confirmed multiple mTOR components as recurrently mutated in HBV-associated HCCs. Of significance, we detected frequent (16.2%, n=18/111) mutations of TSC1 and TSC2 genes in the HCC samples. The spectrum of TSC1/2 mutations likely disrupts the endogenous gene functions in suppressing the downstream mTOR activity through different mechanisms and leads to more aggressive tumour behaviour. Mutational disruption of TSC1 and TSC2 was also observed in HCC cell lines and our PDTX models. TSC-mutant cells exhibited reduced colony-forming ability on rapamycin treatment. With the use of biologically relevant TSC2-mutant PDTXs, we demonstrated the therapeutic benefits of the hypersensitivity towards rapamycin treatment. Conclusions Taken together, our findings suggest the significance of previously undocumented mutation-dependent mTOR hyperactivation and frequent TSC1/2 mutations in HBV-associated HCCs. They define a molecular subset of HCC having genetic aberrations in mTOR signalling, with potential significance of effective specific drug therapy.published_or_final_versio

    Co- and post-translational translocation through the protein-conducting channel:analogous mechanisms at work?

    Get PDF
    Many proteins are translocated across, or integrated into, membranes. Both functions are fulfilled by the 'translocon/translocase', which contains a membrane-embedded proteinconducting channel (PCC) and associated soluble factors that drive translocation and insertion reactions using nucleotide triphosphates as fuel. This perspective focuses on reinterpreting existing experimental data in light of a recently proposed PCC model comprising a front-to-front dimer of SecY or Sec61 heterotrimeric complexes. In this new framework, we propose (i) a revised model for SRP-SR-mediated docking of the ribosome-nascent polypeptide to the PCC; (ii) that the dynamic interplay between protein substrate, soluble factors and PCC controls the opening and closing of a transmembrane channel across, and/or a lateral gate into, the membrane; and (iii) that co-and post-translational translocation, involving the ribosome and SecA, respectively, not only converge at the PCC but also use analogous mechanisms for coordinating protein translocation

    Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes.

    Get PDF
    Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    DNA methylation-based classification of central nervous system tumours.

    Get PDF
    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology

    Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination

    No full text
    In various practical applications, nanomaterials typically have functionalized surfaces. Yet, the studies of toxicity and antibacterial activity of functionalized nanoparticles are scarce. We investigated the effect of surface modifications on antibacterial activity of ZnO under ambient illumination, and we found that nanoparticles coated with different surface modifying reagents could exhibit higher or lower toxicity compared to bare ZnO, depending on the surface modifying reagent used. Different surface modifying reagent molecules resulted in differences in the release of Zn 2+ ions and the production of reactive oxygen species (ROS). However, the antibacterial activity did not correlate with the ROS levels or the Zn 2+ ion release. One of the surface-modified ZnO samples exhibited significantly lower Zn 2+ ion release while at the same time exhibiting improved antibacterial activity. In all cases, damage of the cell wall membranes and/or changes in the membrane permeability have been observed, together with the changes in ATR-FTIR spectra indicating differences in protein conformation. Mechanisms of antibacterial activity are discussed. © 2012 IOP Publishing Ltd.link_to_subscribed_fulltex
    corecore