1,861 research outputs found
Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene
We study the realization in a model of graphene of the phenomenon whereby the
tendency of gauge-field mediated interactions to break chiral symmetry
spontaneously is greatly enhanced in an external magnetic field. We prove that,
in the weak coupling limit, and where the electron-electron interaction
satisfies certain mild conditions, the ground state of charge neutral graphene
in an external magnetic field is a quantum Hall ferromagnet which spontaneously
breaks the emergent U(4) symmetry to U(2)XU(2).
We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet
order parameter is given exactly by the leading order in perturbation theory.
On the other hand, the chiral condensate which is the order parameter for
chiral symmetry breaking generically obtains contributions at all orders. We
compute the leading correction to the chiral condensate. We argue that the
ensuing fermion spectrum resembles that of massive fermions with a vanishing
U(4)-valued chemical potential. We discuss the realization of parity and charge
conjugation symmetries and argue that, in the context of our model, the charge
neutral quantum Hall state in graphene is a bulk insulator, with vanishing
longitudinal conductivity due to a charge gap and Hall conductivity vanishing
due to a residual discrete particle-hole symmetry.Comment: 35 page
Perceptual Other-Race Training Reduces Implicit Racial Bias
Background: Implicit racial bias denotes socio-cognitive attitudes towards other-race groups that are exempt from conscious awareness. In parallel, other-race faces are more difficult to differentiate relative to own-race faces – the ‘‘Other-Race Effect.’ ’ To examine the relationship between these two biases, we trained Caucasian subjects to better individuate other-race faces and measured implicit racial bias for those faces both before and after training. Methodology/Principal Findings: Two groups of Caucasian subjects were exposed equally to the same African American faces in a training protocol run over 5 sessions. In the individuation condition, subjects learned to discriminate between African American faces. In the categorization condition, subjects learned to categorize faces as African American or not. For both conditions, both pre- and post-training we measured the Other-Race Effect using old-new recognition and implicit racial biases using a novel implicit social measure – the ‘‘Affective Lexical Priming Score’ ’ (ALPS). Subjects in the individuation condition, but not in the categorization condition, showed improved discrimination of African American faces with training. Concomitantly, subjects in the individuation condition, but not the categorization condition, showed a reduction in their ALPS. Critically, for the individuation condition only, the degree to which an individual subject’s ALPS decreased was significantly correlated with the degree of improvement that subject showed in their ability to differentiate African American faces
Video Capsule Retention in a Zenker Diverticulum
We report the case of a video capsule endoscope lodged within a Zenker diverticulum. The system that was equipped with a real-time viewer showed an unchanging image unlike esophageal or gastric mucosa, suggesting that the capsule was elsewhere. The presence of cervical discomfort suggested video capsule retention in a Zenker diverticulum. The capsule was removed endoscopically and reinserted using a hood-assisted endoscope and the procedure was completed
Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism
Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery
Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized
Understanding protein structure is of crucial importance in science, medicine
and biotechnology. For about two decades, knowledge based potentials based on
pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been
center stage in the prediction and design of protein structure and the
simulation of protein folding. However, the validity, scope and limitations of
these potentials are still vigorously debated and disputed, and the optimal
choice of the reference state -- a necessary component of these potentials --
is an unsolved problem. PMFs are loosely justified by analogy to the reversible
work theorem in statistical physics, or by a statistical argument based on a
likelihood function. Both justifications are insightful but leave many
questions unanswered. Here, we show for the first time that PMFs can be seen as
approximations to quantities that do have a rigorous probabilistic
justification: they naturally arise when probability distributions over
different features of proteins need to be combined. We call these quantities
reference ratio distributions deriving from the application of the reference
ratio method. This new view is not only of theoretical relevance, but leads to
many insights that are of direct practical use: the reference state is uniquely
defined and does not require external physical insights; the approach can be
generalized beyond pairwise distances to arbitrary features of protein
structure; and it becomes clear for which purposes the use of these quantities
is justified. We illustrate these insights with two applications, involving the
radius of gyration and hydrogen bonding. In the latter case, we also show how
the reference ratio method can be iteratively applied to sculpt an energy
funnel. Our results considerably increase the understanding and scope of energy
functions derived from known biomolecular structures
A Model-Based Bayesian Estimation of the Rate of Evolution of VNTR Loci in Mycobacterium tuberculosis
Variable numbers of tandem repeats (VNTR) typing is widely used for studying the bacterial cause of tuberculosis. Knowledge of the rate of mutation of VNTR loci facilitates the study of the evolution and epidemiology of Mycobacterium tuberculosis. Previous studies have applied population genetic models to estimate the mutation rate, leading to estimates varying widely from around to per locus per year. Resolving this issue using more detailed models and statistical methods would lead to improved inference in the molecular epidemiology of tuberculosis. Here, we use a model-based approach that incorporates two alternative forms of a stepwise mutation process for VNTR evolution within an epidemiological model of disease transmission. Using this model in a Bayesian framework we estimate the mutation rate of VNTR in M. tuberculosis from four published data sets of VNTR profiles from Albania, Iran, Morocco and Venezuela. In the first variant, the mutation rate increases linearly with respect to repeat numbers (linear model); in the second, the mutation rate is constant across repeat numbers (constant model). We find that under the constant model, the mean mutation rate per locus is (95% CI: ,)and under the linear model, the mean mutation rate per locus per repeat unit is (95% CI: ,). These new estimates represent a high rate of mutation at VNTR loci compared to previous estimates. To compare the two models we use posterior predictive checks to ascertain which of the two models is better able to reproduce the observed data. From this procedure we find that the linear model performs better than the constant model. The general framework we use allows the possibility of extending the analysis to more complex models in the future
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
- …