52 research outputs found
Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.
BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK
Reappraisal of Metformin Efficacy in the Treatment of Type 2 Diabetes: A Meta-Analysis of Randomised Controlled Trials
Catherine Cornu and colleagues performed a meta-analysis of randomised controlled trials of metformin efficacy on cardiovascular morbidity or mortality in patients with type 2 diabetes and showed that although metformin is considered the gold standard, its benefit/risk ratio remains uncertain
Attenuated Food Anticipatory Activity and Abnormal Circadian Locomotor Rhythms in Rgs16 Knockdown Mice
Regulators of G protein signaling (RGS) are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs) of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN), the master circadian light-entrainable oscillator (LEO) of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA) targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO)-driven elevated food-anticipatory activity (FAA) observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s)
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Mutation spectra in Salmonella of analogues of MX: implications of chemical structure for mutational mechanisms
We determined the mutation spectra in Salmonella of four chlorinated butenoic acid analogues (BA-1 through BA-4) of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and compared the results with those generated previously by us for MX and a related compound, MCF. We then considered relationships between the properties of mutagenic potency and mutational specificity for these six chlorinated butenoic acid analogues. In TA98, the three most potent mutagens, BA-3, BA-4, MX, and the organic extract, all induced large percentages of complex frameshifts (33-67%), which distinguish these agents from any other class of compound studied previously. In TA100, which has only GC sites for mutation recovery, >71% of the mutations induced by all of the agents were GC-->TA transversions. The availability of both GC and TA sites for mutation in TA104 resulted in greater distinctions in mutational specificity than in TA100. MX targeted GC sites almost exclusively (98%); the structurally similar BA-4 and BA-2 produced mutations at similar frequencies at both GC and AT sites; and the structurally similar BA-3 and BA-1 induced most mutations at AT sites (69%). Thus, large variations in structural properties influencing relative mutagenic potency appeared to be distinct from the more localized similar structural features influencing mutagenic specificity in TA104. Among a set of physicochemical properties examined for the six butenoic acids, a significant correlation was found between pK(a) and mutagenic potency in TA100, even when the unionized fraction of the activity dose was considered. In addition, a correlation in CLOGP for BA-1 to BA-4 suggested a role for bioavailability in determining mutagenic potency. These results illustrate the potential value of structural analyses for exploring the relationship between chemical structure and mutational mechanisms. To our knowledge, this is the first study in which such analyses have been applied to structural analogues for which both mutagenic potency and mutation spectra date were available
Mutation spectra in Salmonella TA98, TA100, and TA104 of two phenylbenzotriazole mutagens (PBTA-1 and PBTA-2) detected in the Nishitakase River in Kyoto, Japan
Previous studies have identified two potent aromatic amine mutagens in the Nishitakase River, a tributary of the Yodo River, which serves as the main drinking water supply for the Osaka area in Japan. The two potent mutagens are 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-am ino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). PBTA-1 and PBTA-2 are presumed to be formed from azo dyes discharged in a reduced form from dye factories to sewage treatment plants where they become chlorinated and are then discharged into the river. PBTA-1 and PBTA-2 account for 21% and 17% of the mutagenic activity of the Nishitakase River, respectively. Here we determined the mutation spectra induced by these two mutagens in TA98, TA100, and TA104 at 30-35, 8-10, and 2x, respectively, above the background. In TA98, the PBTA compounds produced identical mutation spectra, with 100% of the revertants containing the hotspot 2-base deletion of CG within the (CG)(4) sequence. In TA100, 73% of the revertants were GC-->TA transversions, with most of the remaining being GC-->AT transitions; the spectra produced by the two compounds in TA100 were not significantly different (p=0.8). In TA104, as in TA100, the majority (83%-87%) of the revertants were GC-->TA transversions, with most of the remaining revertants (11%-13%) being AT-->TA transversions. Thus, 83%-87% of the mutations induced by the PBTA compounds in TA104 were at G/C sites. The mutation spectra produced by the two compounds in TA104 were not significantly different (p0.08). PBTA-1 and PBTA-2 are structurally similar and have similar mutagenic potencies and mutation spectra in the respective strains. The mutation spectra produced by the PBTA compounds (100% hotspot deletion in TA98 and primarily GC-->TA transversions in TA100 and TA104) are similar to those produced by other potent aromatic amines, which is the class of compounds from which the PBTA mutagens derive
Mutation spectra of the drinking water mutagen 3-chloro-4-methyl-5-hydroxy-2(5H)-furanone (MCF) in Salmonella TA100 and TA104: comparison to MX
The chlorinated drinking water mutagen 3-chloro-4-methyl-5-hydroxy-2(5H)-furanone (MCF) occurs at concentrations similar to or greater than that of the related furanone 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). MCF and MX differ structurally only by replacement of a 3-methyl in MCF with a 3-dichloromethyl in MX; yet, MCF is significantly less mutagenic than MX and produces different adducts when reacted with nucleosides or DNA. To explore further the effects that these structural differences might have on the biological activity of MCF and MX, we determined the mutation spectra of MCF in Salmonella strains TA100 and TA104 and of MX in strain TA104; the spectrum of MX in TA100 had been determined previously. In TA100, which presents only GC targets for mutagenesis, MCF induced primarily (75%) GC --> TA transversions, with most of the remaining revertants (20%) being GC --> AT transitions. This spectrum was not significantly different from that of MX in TA100 (P = 0.07). In TA104, which presents both GC and AT targets, MCF induced a lower percentage (57%) of GC --> TA transversions, with most of the remaining revertants (33%) being AT --> TA transversions. In contrast, MX induced almost only (98%) GC --> TA transversions in TA104, with the remaining revertants (2%) being AT --> TA transversions. Thus, almost all (98%) of the MX mutations were targeted at GC sites in TA104, whereas only 63% of the MCF mutations were so targeted. These results are consistent with the published findings that MX: (1) forms an adduct on guanosine when reacted with guanosine, (2) induces apurinic sites in DNA, and (3) forms a minor adduct on adenosine when reacted with adenosine or DNA. The results are also consistent with evidence that MCF forms adenosine adducts when reacted with adenosine. Our results show that the replacement of the 4-methyl in MCF with a 4-dichloromethyl to form MX not only increases dramatically the mutagenic potency but also shifts significantly the mutagenic specificity from almost equal targeting of GC and AT sites by MCF to almost exclusive targeting of GC sites by MX
- …