13 research outputs found
Internal Jugular Vein Cross-Sectional Area and Cerebrospinal Fluid Pulsatility in the Aqueduct of Sylvius: A Comparative Study between Healthy Subjects and Multiple Sclerosis Patients
Objectives Constricted cerebral venous outflow has been linked with increased cerebrospinal fluid (CSF) pulsatility in the aqueduct of Sylvius in multiple sclerosis (MS) patients and healthy individuals. This study investigates the relationship between CSF pulsatility and internal jugular vein (IJV) cross-sectional area (CSA) in these two groups, something previously unknown. Methods 65 relapsing-remitting MS patients (50.8% female; mean age = 43.8 years) and 74 healthy controls (HCs) (54.1% female; mean age = 43.9 years) were investigated. CSF flow quantification was performed on cine phase-contrast MRI, while IJV-CSA was calculated using magnetic resonance venography. Statistical analysis involved correlation, and partial least squares correlation analysis (PLSCA). Results PLSCA revealed a significant difference (p<0.001; effect size = 1.072) between MS patients and HCs in the positive relationship between CSF pulsatility and IJV-CSA at C5-T1, something not detected at C2-C4. Controlling for age and cardiovascular risk factors, statistical trends were identified in HCs between: increased net positive CSF flow (NPF) and increased IJV-CSA at C5-C6 (left: r = 0.374, p = 0.016; right: r = 0.364, p = 0.019) and C4 (left: r = 0.361, p = 0.020); and increased net negative CSF flow and increased left IJV-CSA at C5-C6 (r = -0.348, p = 0.026) and C4 (r = -0.324, p = 0.039), whereas in MS patients a trend was only identified between increased NPF and increased left IJV-CSA at C5-C6 (r = 0.351, p = 0.021). Overall, correlations were weaker in MS patients (p = 0.015). Conclusions In healthy adults, increased CSF pulsatility is associated with increased IJV-CSA in the lower cervix (independent of age and cardiovascular risk factors), suggesting a biomechanical link between the two. This relationship is altered in MS patients
CAF01 Potentiates Immune Responses and Efficacy of an Inactivated Influenza Vaccine in Ferrets
Trivalent inactivated vaccines (TIV) against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6′-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines
Chronic cerebrospinal venous insufficiency and iron deposition on susceptibility-weighted imaging in patients with multiple sclerosis: a pilot case-control study.
AIM: Chronic cerebrospinal venous insufficiency (CCSVI) is a vascular phenomenon recently described in multiple sclerosis (MS) that is characterized by stenoses affecting the main extracranial venous outflow pathways and by a high rate of cerebral venous reflux that may lead to increased iron deposition in the brain. Aim of this study was to investigate the relationship between CCSVI and iron deposition in the brain of MS patients by correlating venous hemodynamic (VH) parameters and iron concentration in deep-gray matter structures and lesions, as measured by susceptibility-weighted imaging (SWI), and to preliminarily define the relationship between iron measures and clinical and other magnetic resonance imaging (MRI) outcomes. METHODS: Sixteen (16) consecutive relapsing-remitting MS patients and 8 age- and sex-matched healthy controls (HC) were scanned on a GE 3T scanner, using SWI. RESULTS: All 16 MS patients fulfilled the diagnosis of CCSVI (median VH=4), compared to none of the HC. In MS patients, the higher iron concentration in the pulvinar nucleus of the thalamus, thalamus, globus pallidus, and hippocampus was related to a higher number of VH criteria (P<0.05). There was also a significant association between a higher number of VH criteria and higher iron concentration of overlapping T2 (r=-0.64, P=0.007) and T1 (r=-0.56, P=0.023) phase lesions. Iron concentration measures were related to longer disease duration and increased disability as measured by EDSS and MSFC, and to increased MRI lesion burden and decreased brain volume. CONCLUSION: The findings from this pilot study suggest that CCSVI may be an important mechanism related to iron deposition in the brain parenchyma of MS patients. In turn, iron deposition, as measured by SWI, is a modest-to-strong predictor of disability progression, lesion volume accumulation and atrophy development in patients with MS