8,983 research outputs found

    Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy.

    Get PDF
    Hyperammonemia is less severe in arginase 1 deficiency compared with other urea cycle defects. Affected patients manifest hyperargininemia and infrequent episodes of hyperammonemia. Patients typically suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, seizures and intellectual disability; death is less common than with other urea cycle disorders. In a mouse model of arginase I deficiency, the onset of symptoms begins with weight loss and gait instability, which progresses toward development of tail tremor with seizure-like activity; death typically occurs at about 2 weeks of life. Adeno-associated viral vector gene replacement strategies result in long-term survival of mice with this disorder. With neonatal administration of vector, the viral copy number in the liver greatly declines with hepatocyte proliferation in the first 5 weeks of life. Although the animals do survive, it is not known from a functional standpoint how well the urea cycle is functioning in the adult animals that receive adeno-associated virus. In these studies, we administered [1-13C] acetate to both littermate controls and adeno-associated virus-treated arginase 1 knockout animals and examined flux through the urea cycle. Circulating ammonia levels were mildly elevated in treated animals. Arginine and glutamine also had perturbations. Assessment 30 min after acetate administration demonstrated that ureagenesis was present in the treated knockout liver at levels as low at 3.3% of control animals. These studies demonstrate that only minimal levels of hepatic arginase activity are necessary for survival and ureagenesis in arginase-deficient mice and that this level of activity results in control of circulating ammonia. These results may have implications for potential therapy in humans with arginase deficiency

    Sulfur-containing air pollutants as draw solution for fertilizer drawn forward osmosis desalination process for irrigation use

    Full text link
    © 2017 Elsevier B.V. This study investigated suitability and performance of the sulfur-based seed solution (SBSS) as a draw solution (DS), a byproduct taken from the photoelectrochemical (PEC) process where the SBSS is used as an electrolyte for H2 production. This SBSS DS is composed of a mixture of ammonium sulfate ((NH4)2SO4) and ammonium sulfite ((NH4)2SO3), and it can be utilized as fertilizer for fertilizer drawn forward osmosis (FDFO) desalination of saline water. The FDFO process employed with thin-film composite (TFC) membrane and showed that the process performance (i.e. water flux and reverse salt flux) is better than that with cellulose triacetate (CTA) membrane. In addition, it produced high water flux of 19 LMH using SBSS as DS at equivalent concentration at 1 M and 5 g/L NaCl of feed solution (model saline water). Experimental results showed that the reverse salt flux of SBSS increased with the increase in pH of the DS and that lowering the concentration of ammonium sulfite in the SBSS led to the higher water flux of feed solution. The result also demonstrated that this SBSS is practically suitable for the FDFO process toward development of water-energy-food nexus technology using sulfur chemicals-containing air pollutant

    Proposed New Antiproton Experiments at Fermilab

    Full text link
    Fermilab operates the world's most intense source of antiprotons. Recently various experiments have been proposed that can use those antiprotons either parasitically during Tevatron Collider running or after the Tevatron Collider finishes in about 2010. We discuss the physics goals and prospects of the proposed experiments.Comment: 6 pages, 2 figures, to appear in Proceedings of IXth International Conference on Low Energy Antiproton Physics (LEAP'08), Vienna, Austria, September 16 to 19, 200

    Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-by-layer polyelectrolyte deposition

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported thin film composite (TFC) membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 L m−2 h−1 bar−1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane

    Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers

    Full text link
    The aim of this study was to evaluate the device performance of a new design by comparing with a typical commercial DPI. Computational fluid dynamics (CFD) coupled with the discrete element method (DEM) collision has been utilized in this study to characterize and examine the flow field and particle transportation, respectively. A typical commercial DPI and an in-house designed novel DPI with distinct design features were compared to explore their dispersion capabilities and suitability for delivery to the respiratory tract. For this exploration, realistic oral to larynx and tracheobronchial airway models consisting of bio-relevant features were adopted to enhance practical feasibility. Distinct aerosol performances were observed between the two DPIs in the respiratory tract, where the in-house DPI, in comparison with the commercial DPI, has shown approximately 30% lower deposition fraction in the mouth-throat region with approximately 7% higher escape rate in the tracheobronchial region under the identical inhalation condition. This observation demonstrates that a novel in-house designed DPI provides higher device efficiency over the selected typical commercial DPI

    Origin of New Broad Raman D and G Peaks in Annealed Graphene

    Get PDF
    Since graphene, a single sheet of graphite, has all of its carbon atoms on the surface, its property is very sensitive to materials contacting the surface. Herein, we report novel Raman peaks observed in annealed graphene and elucidate their chemical origins by Raman spectroscopy and atomic force microscopy (AFM). Graphene annealed in oxygen-free atmosphere revealed very broad additional Raman peaks overlapping the D, G and 2D peaks of graphene itself. Based on the topographic confirmation by AFM, the new Raman peaks were attributed to amorphous carbon formed on the surface of graphene by carbonization of environmental hydrocarbons. While the carbonaceous layers were formed for a wide range of annealing temperature and time, they could be effectively removed by prolonged annealing in vacuum. This study underlines that spectral features of graphene and presumably other 2-dimensional materials are highly vulnerable to interference by foreign materials of molecular thickness.open116167Nsciescopu

    Investigation of the Antiasthmatic Properties of Ethanol Extract of Callophyllis japonica in Mice

    Get PDF
    Purpose: To determine whether an ethanol extract from Callophyllis japonica (C. japonica) could attenuate indices of airway inflammation in a murine model of ovalbumin (OVA)-induced asthma.Methods: The free radical scavenging activity of the C. japonica ethanol extracts (CJE) were investigated using an electron spin resonance (ESR) system. To make develop animal model of asthma, mice were sensitized and challenged with OVA.Results: CJE exhibited considerable scavenging activity of 71.08 ± 0.73, 79.11 ± 6.04%, 75.95 ± 7.01%, and 48.56 ± 5.96% of DPPH, alkyl, superoxide, and hydroxyl radicals, respectively. The successive intraperitoneal administration of CJE reduced the number of eosinophils in bronchoalveolar lavage (BAL) fluid, development of airway hyperresponsiveness (AHR), an increase in pulmonary Th2 cytokines, and allergen-specific immunoglobulin E (IgE).Conclusion: Administration of CJE markedly alleviates all indices of airway inflammation. This study provides evidence that CJE plays a critical role in the amelioration of the pathogenetic process of allergic asthma in mice.Keywords: Asthma, Phenolic contents, Free radical scavenging, Airway hyper-responsiveness, Cytokines, Immunoglobulin

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0n+nˉD0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte

    Ramond-Ramond Cohomology and O(D,D) T-duality

    Full text link
    In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries-- we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D,D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To appear in JHEP. cf. Gong Show of Strings 2012 (http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf
    corecore