7 research outputs found

    Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    Get PDF
    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions

    Conjugated Polymers: Relationship Between Morphology and Optical Properties

    No full text
    In this Chapter we will start by briefly summarising the basic concepts of the electronic structure of conjugated polymers. This will enable the discussion of the relevant descriptions of the dielectric function. We will relate these descriptions to the model parameterisations which are used in advanced ellipsometric analysis of thin films such as those used in devices for organic photovoltaics (OPVs) and light emitting diodes (OLEDs). Amongst other things, such parametric descriptions are useful to deal with structural changes in conjugated polymer thin films. Once the models are presented, we will provide representative examples of the nexus between morphology and optical constants, and how the latter can be employed to infer aspects of the former. First, we will discuss how chain conformation affects the optical properties. Then, we will explain the anisotropic behaviour of conjugated polymer films due to their intrinsic molecular anisotropy and review different cases (f. i., oriented films or semicrystalline polymers). We will also describe structural changes that occur upon blending polymers with fullerenes and concomitant variations of the optical properties. Here we will focus on state of the art low band gap polymers mixed with fullerenes. Finally, real-time ellipsometric experiments in which these structure-property relationships can be exploited will be presented.The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through grant MAT2015-70850-P and the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496).Peer reviewe

    Cardiac purinergic signalling in health and disease

    No full text
    corecore