26 research outputs found

    Microbiological quality of drinking rainwater in the inland region of Pajeú, Pernambuco, Northeast Brazil

    Get PDF
    Despite all efforts to store and reduce its consumption, water is becoming less inexhaustible and its quality is falling faster. Considering that water is essential to animal life, it is necessary to adopt measures to ensure its sanitary conditions in order to be fit for consumption. The aim of this study was to analyze the microbiological quality of drinking rainwater used by rural communities of Tuparetama, a small town located in Northeast Brazil. The study covered seven rural communities, totaling 66 households. In each household two samples were collected, one from a tank and the other from a clay pot located inside the home, resulting in 132 samples (tank plus clay pot). Approximately 90% of samples were below the standard recommended by the current legislation, being considered unfit for human consumption. Part of this high microbiological contamination of drinking rainwater could be related to the lack of sanitary education and of an adequate sewerage sanitation system

    Alternative methodology for isolation of biosurfactant-producing bacteria

    No full text
    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g.L-1) and Arabian Light oil (2 g.L-1) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources
    corecore