188 research outputs found

    Cytosolic SYT/SS18 Isoforms Are Actin-Associated Proteins that Function in Matrix-Specific Adhesion

    Get PDF
    SYT (SYnovial sarcoma Translocated gene or SS18) is widely produced as two isoforms, SYT/L and SYT/S, that are thought to function in the nucleus as transcriptional coactivators. Using isoform-specific antibodies, we detected a sizable pool of SYT isoforms in the cytosol where the proteins were organized into filamentous arrays. Actin and actin-associated proteins co-immunoprecipitated with SYT isoforms, which also co-sedimented and co-localized with the actin cytoskeleton in cultured cells and tissues. The association of SYT with actin bundles was extensive yet stopped short of the distal ends at focal adhesions. Disruption of the actin cytoskeleton also led to a breakdown of the filamentous organization of SYT isoforms in the cytosol. RNAi ablation of SYT/L alone or both isoforms markedly impaired formation of stress fibers and focal adhesions but did not affect formation of cortical actin bundles. Furthermore, ablation of SYT led to markedly impaired adhesion and spreading on fibronectin and laminin-111 but not on collagen types I or IV. These findings indicate that cytoplasmic SYT isoforms interact with actin filaments and function in the ability cells to bind and react to specific extracellular matrices

    Epigenetic Features of Human Mesenchymal Stem Cells Determine Their Permissiveness for Induction of Relevant Transcriptional Changes by SYT-SSX1

    Get PDF
    BACKGROUND: A characteristic SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is detectable in almost all synovial sarcomas, a malignant soft tissue tumor widely believed to originate from as yet unidentified pluripotent stem cells. The resulting fusion protein has no DNA binding motifs but possesses protein-protein interaction domains that are believed to mediate association with chromatin remodeling complexes. Despite recent advances in the identification of molecules that interact with SYT-SSX and with the corresponding wild type SYT and SSX proteins, the mechanisms whereby the SYT-SSX might contribute to neoplastic transformation remain unclear. Epigenetic deregulation has been suggested to be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: We addressed the effect of SYT/SSX expression on the transcriptome of four independent isolates of primary human bone marrow mesenchymal stem cells (hMSC). We observed transcriptional changes similar to the gene expression signature of synovial sarcoma, principally involving genes whose regulation is linked to epigenetic factors, including imprinted genes, genes with transcription start sites within a CpG island and chromatin related genes. Single population analysis revealed hMSC isolate-specific transcriptional changes involving genes that are important for biological functions of stem cells as well as genes that are considered to be molecular markers of synovial sarcoma including IGF2, EPHRINS, and BCL2. Methylation status analysis of sequences at the H19/IGF2 imprinted locus indicated that distinct epigenetic features characterize hMSC populations and condition the transcriptional effects of SYT-SSX expression. CONCLUSIONS/SIGNIFICANCE: Our observations suggest that epigenetic features may define the cellular microenvironment in which SYT-SSX displays its functional effects

    QSRA – a quality-value guided de novo short read assembler

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New rapid high-throughput sequencing technologies have sparked the creation of a new class of assembler. Since all high-throughput sequencing platforms incorporate errors in their output, short-read assemblers must be designed to account for this error while utilizing all available data.</p> <p>Results</p> <p>We have designed and implemented an assembler, Quality-value guided Short Read Assembler, created to take advantage of quality-value scores as a further method of dealing with error. Compared to previous published algorithms, our assembler shows significant improvements not only in speed but also in output quality.</p> <p>Conclusion</p> <p>QSRA generally produced the highest genomic coverage, while being faster than VCAKE. QSRA is extremely competitive in its longest contig and N50/N80 contig lengths, producing results of similar quality to those of EDENA and VELVET. QSRA provides a step closer to the goal of de novo assembly of complex genomes, improving upon the original VCAKE algorithm by not only drastically reducing runtimes but also increasing the viability of the assembly algorithm through further error handling capabilities.</p

    The Mitotic Arrest Deficient Protein MAD2B Interacts with the Small GTPase RAN throughout the Cell Cycle

    Get PDF
    Contains fulltext : 81260.pdf (publisher's version ) (Open Access)BACKGROUND: Previously, we identified the mitotic arrest deficient protein MAD2B (MAD2L2) as a bona fide interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and, concomitantly, an abrogation of cell cycle progression. Although MAD2B is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1(FZR1), its exact role in cell cycle control still remains to be established. METHODOLOGY/PRINCIPAL FINDINGS: Using a yeast two-hybrid interaction trap we identified the small GTPase RAN, a well-known cell cycle regulator, as a novel MAD2B binding protein. Endogenous interaction was established in mammalian cells via co-localization and co-immunoprecipitation of the respective proteins. The interaction domain of RAN could be assigned to a C-terminal moiety of 60 amino acids, whereas MAD2B had to be present in its full-length conformation. The MAD2B-RAN interaction was found to persist throughout the cell cycle. During mitosis, co-localization at the spindle was observed. CONCLUSIONS/SIGNIFICANCE: The small GTPase RAN is a novel MAD2B binding protein. This novel protein-protein interaction may play a role in (i) the control over the spindle checkpoint during mitosis and (ii) the regulation of nucleocytoplasmic trafficking during interphase

    An ALS-Linked Mutant SOD1 Produces a Locomotor Defect Associated with Aggregation and Synaptic Dysfunction When Expressed in Neurons of Caenorhabditis elegans

    Get PDF
    The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking

    Assembly complexity of prokaryotic genomes using short reads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>De Bruijn graphs are a theoretical framework underlying several modern genome assembly programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to analyze the global repeat structure of prokaryotic genomes.</p> <p>Results</p> <p>We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an upper-bound on the performance of genome assemblers for <it>de novo </it>reconstruction of genomes across a wide range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages).</p> <p>Conclusions</p> <p>Our results improve upon previous studies on the feasibility of assembly with short reads and provide a comprehensive benchmark against which to compare the performance of the short-read assemblers currently being developed.</p

    Deletion of the BDNF Truncated Receptor TrkB.T1 Delays Disease Onset in a Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Brain Derived Neurotrophic Factor (BDNF) exerts strong pro-survival effects on developing and injured motoneurons. However, in clinical trials, BDNF has failed to benefit patients with amyotrophic lateral sclerosis (ALS). To date, the cause of this failure remains unclear. Motoneurons express the TrkB kinase receptor but also high levels of the truncated TrkB.T1 receptor isoform. Thus, we investigated whether the presence of this receptor may affect the response of diseased motoneurons to endogenous BDNF. We deleted TrkB.T1 in the hSOD1G93A ALS mouse model and evaluated the impact of this mutation on motoneuron death, muscle weakness and disease progression. We found that TrkB.T1 deletion significantly slowed the onset of motor neuron degeneration. Moreover, it delayed the development of muscle weakness by 33 days. Although the life span of the animals was not affected we observed an overall improvement in the neurological score at the late stage of the disease. To investigate the effectiveness of strategies aimed at bypassing the TrkB.T1 limit to BDNF signaling we treated SOD1 mutant mice with the adenosine A2A receptor agonist CGS21680, which can activate motoneuron TrkB receptor signaling independent of neurotrophins. We found that CGS21680 treatment slowed the onset of motor neuron degeneration and muscle weakness similarly to TrkB.T1 removal. Together, our data provide evidence that endogenous TrkB.T1 limits motoneuron responsiveness to BDNF in vivo and suggest that new strategies such as Trk receptor transactivation may be used for therapeutic intervention in ALS or other neurodegenerative disorders

    The Synovial Sarcoma-Associated SYT-SSX2 Oncogene Antagonizes the Polycomb Complex Protein Bmi1

    Get PDF
    This study demonstrates deregulation of polycomb activity by the synovial sarcoma-associated SYT-SSX2 oncogene, also known as SS18-SSX2. Synovial sarcoma is a soft tissue cancer associated with a recurrent t(X:18) translocation event that generates one of two fusion proteins, SYT-SSX1 or SYT-SSX2. The role of the translocation products in this disease is poorly understood. We present evidence that the SYT-SSX2 fusion protein interacts with the polycomb repressive complex and modulates its gene silencing activity. SYT-SSX2 causes destabilization of the polycomb subunit Bmi1, resulting in impairment of polycomb-associated histone H2A ubiquitination and reactivation of polycomb target genes. Silencing by polycomb complexes plays a vital role in numerous physiological processes. In recent years, numerous reports have implicated gain of polycomb silencing function in several cancers. This study provides evidence that, in the appropriate context, expression of the SYT-SSX2 oncogene leads to loss of polycomb function. It challenges the notion that cancer is solely associated with an increase in polycomb function and suggests that any imbalance in polycomb activity could drive the cell toward oncogenesis. These findings provide a mechanism by which the SYT-SSX2 chimera may contribute to synovial sarcoma pathogenesis

    Exploiting Nucleotide Composition to Engineer Promoters

    Get PDF
    The choice of promoter is a critical step in optimizing the efficiency and stability of recombinant protein production in mammalian cell lines. Artificial promoters that provide stable expression across cell lines and can be designed to the desired strength constitute an alternative to the use of viral promoters. Here, we show how the nucleotide characteristics of highly active human promoters can be modelled via the genome-wide frequency distribution of short motifs: by overlapping motifs that occur infrequently in the genome, we constructed contiguous sequence that is rich in GC and CpGs, both features of known promoters, but lacking homology to real promoters. We show that snippets from this sequence, at 100 base pairs or longer, drive gene expression in vitro in a number of mammalian cells, and are thus candidates for use in protein production. We further show that expression is driven by the general transcription factors TFIIB and TFIID, both being ubiquitously present across cell types, which results in less tissue- and species-specific regulation compared to the viral promoter SV40. We lastly found that the strength of a promoter can be tuned up and down by modulating the counts of GC and CpGs in localized regions. These results constitute a “proof-of-concept” for custom-designing promoters that are suitable for biotechnological and medical applications
    corecore