1,334 research outputs found
Placing the university: thinking in and beyond globalization
In some respects, the impact of globalization on universities is well rehearsed (competition for international students; the drive for status in global rankings; the opening of overseas campuses; the dream of massive open online courses and other forms of digital education), but the relationship between universities as place-based institutions and globalization is less well understood. It is on that this chapter focuses. Drawing on work undertaken as part of an Economic and Social Research Council project (“Higher Education and Regional Social Transformation”) the author sets the arguments in a wider context. He explores the extent to which and ways in which universities have become key players in the reimagination of their city regions in a (neoliberal) global context. As well as reflecting on the wider public (and local) role of universities, he also considers how universities use the tools available to them to position themselves effectively as successful businesses within the new world in which they find themselves
Interaction between polar molecules subject to a far-off-resonant optical field: Entangled dipoles up- or down-holding each other
We show that the electric dipole-dipole interaction between a pair of polar
molecules undergoes an all-out transformation when superimposed by a far-off
resonant optical field. The combined interaction potential becomes tunable by
variation of wavelength, polarization and intensity of the optical field and
its dependence on the intermolecular separation exhibits a crossover from an
inverse-power to an oscillating behavior. The ability thereby offered to
control molecular interactions opens up avenues toward the creation and
manipulation of novel phases of ultracold polar gases among whose
characteristics is a long-range entanglement of the dipoles' mutual
orientation. We devised an accurate analytic model of such
optical-field-dressed dipole-dipole interaction potentials, which enables a
straightforward access to the optical-field parameters required for the design
of intermolecular interactions in the laboratory.Comment: 11 pages, 6 figures, 1 table. arXiv admin note: substantial text
overlap with arXiv:1104.104
Directional emission of light from a nano-optical Yagi-Uda antenna
The plasmon resonance of metal nanoparticles can enhance and direct light
from optical emitters in much the same way that radio frequency (RF) antennas
enhance and direct the emission from electrical circuits. In the RF regime, a
typical antenna design for high directivity is the Yagi-Uda antenna, which
basically consists of a one-dimensional array of antenna elements driven by a
single feed element. Here, we present the experimental demonstration of
directional light emission from a nano-optical Yagi-Uda antenna composed of an
array of appropriately tuned gold nanorods. Our results indicate that
nano-optical antenna arrays are a simple but efficient tool for the spatial
control of light emission.Comment: 4 pages, including 4 figure
Seq4SNPs: new software for retrieval of multiple, accurately annotated DNA sequences, ready formatted for SNP assay design.
BACKGROUND: In moderate-throughput SNP genotyping there was a gap in the workflow, between choosing a set of SNPs and submitting their sequences to proprietary assay design software, which was not met by existing software. Retrieval and formatting of sequences flanking each SNP, prior to assay design, becomes rate-limiting for more than about ten SNPs, especially if annotated for repetitive regions and adjacent variations. We routinely process up to 50 SNPs at once. IMPLEMENTATION: We created Seq4SNPs, a web-based, walk-away software that can process one to several hundred SNPs given rs numbers as input. It outputs a file of fully annotated sequences formatted for one of three proprietary design softwares: TaqMan's Primer-By-Design FileBuilder, Sequenom's iPLEX or SNPstream's Autoprimer, as well as unannotated fasta sequences. We found genotyping assays to be inhibited by repetitive sequences or the presence of additional variations flanking the SNP under test, and in multiplexes, repetitive sequence flanking one SNP adversely affects multiple assays. Assay design software programs avoid such regions if the input sequences are appropriately annotated, so we used Seq4SNPs to provide suitably annotated input sequences, and improved our genotyping success rate. Adjacent SNPs can also be avoided, by annotating sequences used as input for primer design. CONCLUSION: The accuracy of annotation by Seq4SNPs is significantly better than manual annotation (P < 1e-5).Using Seq4SNPs to incorporate all annotation for additional SNPs and repetitive elements into sequences, for genotyping assay designer software, minimizes assay failure at the design stage, reducing the cost of genotyping. Seq4SNPs provides a rapid route for replacement of poor test SNP sequences. We routinely use this software for assay sequence preparation. Seq4SNPs is available as a service at (http://moya.srl.cam.ac.uk/oncology/bio/s4shome.html) and (http://moya.srl.cam.ac.uk/cgi-bin/oncology/srl/ncbi/seq4snp1.pl), currently for human SNPs, but easily extended to include any species in dbSNP.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation
Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods
Singlet Portal to the Hidden Sector
Ultraviolet physics typically induces a kinetic mixing between gauge singlets
which is marginal and hence non-decoupling in the infrared. In singlet
extensions of the minimal supersymmetric standard model, e.g. the
next-to-minimal supersymmetric standard model, this furnishes a well motivated
and distinctive portal connecting the visible sector to any hidden sector which
contains a singlet chiral superfield. In the presence of singlet kinetic
mixing, the hidden sector automatically acquires a light mass scale in the
range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with
R-parity conservation, superparticles produced at the LHC invariably cascade
decay into hidden sector particles. Since the hidden sector singlet couples to
the visible sector via the Higgs sector, these cascades necessarily produce a
Higgs boson in an order 0.01 - 1 fraction of events. Furthermore,
supersymmetric cascades typically produce highly boosted, low-mass hidden
sector singlets decaying visibly, albeit with displacement, into the heaviest
standard model particles which are kinematically accessible. We study
experimental constraints on this broad class of theories, as well as the role
of singlet kinetic mixing in direct detection of hidden sector dark matter. We
also present related theories in which a hidden sector singlet interacts with
the visible sector through kinetic mixing with right-handed neutrinos.Comment: 12 pages, 5 figure
Post-treatment follow-up study of abdominal cystic echinococcosis in Tibetan communities of northwest Sichuan Province, China
Background: Human cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus, with the liver as the
most frequently affected organ, is known to be highly endemic in Tibetan communities of northwest Sichuan Province.
Antiparasitic treatment with albendazole remains the primary choice for the great majority of patients in this resource-poor
remote area, though surgery is the most common approach for CE therapy that has the potential to remove cysts and lead
to complete cure. The current prospective study aimed to assess the effectiveness of community based use of cyclic
albendazole treatment in Tibetan CE cases, and concurrently monitor the changes of serum specific antibody levels during
treatment.
Methodology/Principal Findings: Ultrasonography was applied for diagnosis and follow-up of CE cases after cyclic
albendazole treatment in Tibetan communities of Sichuan Province during 2006 to 2008, and serum specific IgG antibody
levels against Echinococcus granulosus recombinant antigen B in ELISA was concurrently monitored in these cases. A total of
196 CE cases were identified by ultrasound, of which 37 (18.9%) showed evidence of spontaneous healing/involution of
hepatic cyst(s) with CE4 or CE5 presentations. Of 49 enrolled CE cases for treatment follow-up, 32.7% (16) were considered
to be cured based on B-ultrasound after 6 months to 30 months regular albendazole treatment, 49.0% (24) were improved,
14.3% (7) remained unchanged, and 4.1% (2) became aggravated. In general, patients with CE2 type cysts (daughter cysts
present) needed a longer treatment course for cure (26.4 months), compared to cases with CE1 (univesicular cysts) (20.4
months) or CE3 type (detached cyst membrane or partial degeneration of daughter cysts) (9 months). In addition, the
curative duration was longer in patients with large (.10 cm) cysts (22.3 months), compared to cases with medium (5–
10 cm) cysts (17.3 months) or patients with small (,5 cm) cysts (6 months). At diagnosis, seven (53.8%) of 13 cases with CE1
type cysts without any previous intervention showed negative specific IgG antibody response to E. granulosus recombinant
antigen B (rAgB). However, following 3 months to 18 months albendazole therapy, six of these 7 initially seronegative CE1
cases sero-converted to be specific IgG antibody positive, and concurrently ultrasound scan showed that cysts changed to
CE3a from CE1 type in all the six CE cases. Two major profiles of serum specific IgG antibody dynamics during albendazole
treatment were apparent in CE cases: (i) presenting as initial elevation followed by subsequent decline, or (ii) a persistent
decline. Despite a decline, however, specific antibody levels remained positive in most improved or cured CE cases.
Conclusions: This was the first attempt to follow up community-screened cystic echinococcosis patients after albendazole
therapy using ultrasonography and serology in an endemic Tibetan region. Cyclic albendazole treatment proved to be
effective in the great majority of CE cases in this resource-poor area, but periodic abdominal ultrasound examination was
necessary to guide appropriate treatment. Oral albendazole for over 18 months was more likely to result in CE cure. Poor
drug compliance resulted in less good outcomes. Serology with recombinant antigen B could provide additional limited
information about the effectiveness of albendazole in CE cases. Post-treatment positive specific IgG antibody
seroconversion, in initially seronegative, CE1 patients was considered a good indication for positive therapeutic efficacy
of albendazole
CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen.
INTRODUCTION: Tamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen. METHODS: This was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis. RESULTS: In tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups. CONCLUSIONS: CYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
- …
