28 research outputs found
Odor from anaerobic digestion of swine slurry: influence of pH, temperature and organic loading
Farm slurry management from storage and/or treatment is the main source of odors from swine production, which are determined by factors such as operational variations (organic loading), cleaning of facilities and animal diet (pH) or environmental conditions (temperature). The aim of this study was to evaluate the influence of pH, temperature and organic loading on odor generation during anaerobic digestion of swine slurry. The methodology employed batch experimental units under controlled pH (6.0, 6.5, 7.0 and 8.0) and temperature (20, 35 and 55 °C) conditions. Additionally, an Upflow Anaerobic Sludge Blanket (UASB) system was operated under two Organic Loading Rate (OLR) conditions as Chemical Oxygen Demand (COD) (Phase I: 0.4 g L-1 d-1 of COD, Phase II: 1.1 g L-1 d-1 of COD). Odor (batch and UASB reactor) was evaluated by detection and recognition threshold as Dilution Threshold (D-T). Acidic conditions (pH 6.0) and thermophilic temperatures (55 °C) increased odors (1,358 D-T) and acidified the system (Intermediate/Total Alkalinity ratio (IT/TA): 0.85) in batch experiments. Increasing OLR on UASB reactor reduced odors from 6.3 to 9.6 D-T d-1 due to an increase in the production of biogas (0.4 to 0.6 g g-1 COD removed of biogas)
Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect
The bacterial bioaerosol community of eight swine confinement buildings (SCB) was monitored during two visits in the winter, and one during the summer. To our knowledge, culture-independent approaches and molecular biology tools such as biomass quantification and biodiversity analyses have never been applied to swine building bioaerosol analyses. Total DNA of each sample was extracted and analysed by quantitative real-time polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis using primers targeting the bacterial 16S rRNA gene. Even though the total bacterial concentration was higher in winter than in summer, the total bacterial concentration for both seasons was 100 to1000 times higher than the total cultural bacteria. The concentration of bioaerosol was influenced by the temperature indoors, which was regulated with an electronic fan system driving warm air and particles outside of the SCB. Comparison of the DGGE profiles showed the same biodiversity in each SCB during both seasons. The phylogenetic analysis revealed a large number of sequences (93.8%) related to Gram-positive anaerobic bacteria, such as Clostridia, and dominated by the Clostridia cluster I (C. disporicum) and the Clostridia cluster XI (C. glycolycum). The bioaerosol diversity also contained also a low proportion of Bacteroidetes and Lactobacillales–Streptococcales sequences. Analyses of the global community and phylotype diversity showed that the main source of bioaerosols could come from the pig manure slurry