54 research outputs found
Entropy flow in near-critical quantum circuits
Near-critical quantum circuits are ideal physical systems for asymptotically
large-scale quantum computers, because their low energy collective excitations
evolve reversibly, effectively isolated from the environment. The design of
reversible computers is constrained by the laws governing entropy flow within
the computer. In near-critical quantum circuits, entropy flows as a locally
conserved quantum current, obeying circuit laws analogous to the electric
circuit laws. The quantum entropy current is just the energy current divided by
the temperature. A quantum circuit made from a near-critical system (of
conventional type) is described by a relativistic 1+1 dimensional relativistic
quantum field theory on the circuit. The universal properties of the
energy-momentum tensor constrain the entropy flow characteristics of the
circuit components: the entropic conductivity of the quantum wires and the
entropic admittance of the quantum circuit junctions. For example,
near-critical quantum wires are always resistanceless inductors for entropy. A
universal formula is derived for the entropic conductivity:
\sigma_S(\omega)=iv^{2}S/\omega T, where \omega is the frequency, T the
temperature, S the equilibrium entropy density and v the velocity of `light'.
The thermal conductivity is Real(T\sigma_S(\omega))=\pi v^{2}S\delta(\omega).
The thermal Drude weight is, universally, v^{2}S. This gives a way to measure
the entropy density directly.Comment: 2005 paper published 2017 in Kadanoff memorial issue of J Stat Phys
with revisions for clarity following referee's suggestions, arguments and
results unchanged, cross-posting now to quant-ph, 27 page
Activity and Habitat Use of Chimpanzees (Pan troglodytes verus) in the Anthropogenic Landscape of Bossou, Guinea, West Africa
Many primate populations inhabit anthropogenic landscapes. Understanding their long-term ability to persist in such environments and associated real and perceived risks for both primates and people is essential for effective conservation planning. Primates in forest–agricultural mosaics often consume cultivars to supplement their diet, leading to potentially negative encounters with farmers. When crossing roads, primates also face the risk of encounters with people and collision with vehicles. Chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa, face such risks regularly. In this study, we aimed to examine their activity budget across habitat types and the influence of anthropogenic risks associated with cultivated fields, roads, and paths on their foraging behavior in noncultivated habitat. We conducted 6-h morning or afternoon follows daily from April 2012 to March 2013. Chimpanzees preferentially used forest habitat types for traveling and resting and highly disturbed habitat types for socializing. Wild fruit and crop availability influenced seasonal habitat use for foraging. Overall, chimpanzees preferred mature forest for all activities. They showed a significant preference for foraging at >200 m from cultivated fields compared to 0–100 m and 101–200 m, with no effect of habitat type or season, suggesting an influence of associated risk. Nevertheless, the chimpanzees did not actively avoid foraging close to roads and paths. Our study reveals chimpanzee reliance on different habitat types and the influence of human-induced pressures on their activities. Such information is critical for the establishment of effective land use management strategies in anthropogenic landscapes
Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes
Abstract: Purpose: This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. Methods: Web of Science and Google Scholar were used to review published papers spanning the period 2013–2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018–2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. Scope: Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. Conclusions: The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach
Facial burns in children: A series analysis with implications for resuscitation and forensic odontology
This study comprises a continuous (1981-1995) unselected series of all children who died from thermal injuries in the State of Queensland, Australia. One hundred and six children, so identified, died from incineration (35 per cent), respiratory burns with smoke or carbon monoxide inhalation (33 per cent), body surface area burns comprising greater than 60 per cent (9 per cent) and electrocution (20 per cent). The burn fatality rate was 0.98 per hundred thousand children (0-14 years) per year, with no secular trend and, specifically, no reduction in the annual rate of such fatalities. Eighty-two children (49 males) had concomitant facial injuries, both thermal and nonthermal; of whom 55 per cent were under the age of five years. Sixty (73 per cent) child burn victims died in house fires. Forensic odontology is important in confirming the age of such victims in single incinerations but is of limited value when larger numbers of children are incinerated, because of the relative lack of dental restorations in the infant and pre-school age group. Of the 82 children with facial and airway injuries, 12 per cent had only mild or superficial facial damage and only seven (8 per cent) were alive or resuscitatable at the time of rescue from the conflagration or burning injury. Child deaths from burns contributed an annual loss rate of 506 years of potential life lost (YPLL) in a population of 3 million of whom 21.5 per cent were children under the age of 15 years. Airway management and resuscitation, in the context of managing surviving burn victims of any age with facial injuries, pose special difficulties. Inhalational burns (smoke and the gases of conflagration) result in a mortality greater than 60 per cent. Although 81 per cent of children showed evidence of airway obstruction, analysis of current data indicates that a maximum of 8 per cent could have survived with airway maintenance and protection. Inhalational burns (to both upper and lower airways) grossly reduce survivability. Primary prevention would seem vital and thus remains a major challenge to reduce the incidence of such deaths. Some strategies include advocacy to promote the compulsory installation of smoke alarms, family drills to practise escape and the teaching of 'first aid for all'
- …