53 research outputs found

    Enhancement of CO2 Uptake and Selectivity in a Metal-Organic Framework by the Incorporation of Thiophene Functionality

    Get PDF
    The complex [Zn2(tdc)2dabco] (H2tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO2) uptake and CO2/dinitrogen (N2) selectivity compared to the nonthiophene analogue [Zn2(bdc)2dabco] (H2bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO2 adsorption at 1 bar for [Zn2(tdc)2dabco] is 67.4 cm3·g–1 (13.2 wt %) at 298 K and 153 cm3·g–1 (30.0 wt %) at 273 K. For [Zn2(bdc)2dabco], the equivalent values are 46 cm3·g–1 (9.0 wt %) and 122 cm3·g–1 (23.9 wt %), respectively. The isosteric heat of adsorption for CO2 in [Zn2(tdc)2dabco] at zero coverage is low (23.65 kJ·mol–1), ensuring facile regeneration of the porous material. Enhancement by the thiophene group on the separation of CO2/N2 gas mixtures has been confirmed by both ideal adsorbate solution theory calculations and dynamic breakthrough experiments. The preferred binding sites of adsorbed CO2 in [Zn2(tdc)2dabco] have been unambiguously determined by in situ single-crystal diffraction studies on CO2-loaded [Zn2(tdc)2dabco], coupled with quantum-chemical calculations. These studies unveil the role of the thiophene moieties in the specific CO2 binding via an induced dipole interaction between CO2 and the sulfur center, confirming that an enhanced CO2 capacity in [Zn2(tdc)2dabco] is achieved without the presence of open metal sites. The experimental data and theoretical insight suggest a viable strategy for improvement of the adsorption properties of already known materials through the incorporation of sulfur-based heterocycles within their porous structures

    Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology

    Get PDF
    Porous coordination polymers are well known for their easily tailored framework structures and corresponding properties. Although systematic modulations of pore sizes of binary prototypes have gained great success, simultaneous adjustment of both pore size and shape of ternary prototypes remains unexplored, owing to the difficulty in controlling the self-assembly of multiple molecular building blocks. Here we show that simple geometry analysis can be used to estimate the influence of the linker lengths and length ratios on the synthesis/construction difficulties and framework stabilities of a highly symmetric, ternary prototype composed of a typical trinuclear metal cluster and two types of bridging carboxylate ligands. As predicted, systematic syntheses with 5×5 ligand combinations produced 13 highly porous isoreticular frameworks, which show not only systematic adjustment of pore volumes (0.49–2.04 cm3 g−1) and sizes (7.8–13.0 Å; 5.2–12.0 Å; 7.4–17.4 Å), but also anisotropic modulation of the pore shapes

    Three-dimensional metal-organic framework with (3,4)-connected net, synthesized from an ionic liquid medium

    No full text
    A new 3D metal-organic framework with a (3,4)-connected network topology is synthesized from an ionic liquid medium; its highly symmetrical structure comprises doubly interpenetrating nets with the cubic-C3N4 topology.open11196sciescopu

    Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials

    No full text
    A systematic modulation of organic ligands connecting dinuclear paddle-wheel motifs leads to a series of isomorphous metal-organic porous materials that have a three-dimensional connectivity and interconnected pores. Aromatic dicarboxylates such as 1,4-bonzenedicarboxylate (1,4-bdc), tetramethylterephthalate (tmbdc), 1,4-naphthalenedicarboxylate (1,4-ndc), tetrafluoroterephthalate (tfbdc), or 2,6-naphthalenedicarboxylate (2,6-ndc) are linear linkers that form two-dimensiona layers, and diamine ligands' 4-diazabicyclo [2.2.2] octane (dabco) or 4.4'-dipyridyl (bpy), coordinate at both sides of Zn-2, paddle-wheel units to bridge the layers vertically. The resulting open frameworks [Zn-2(1,4-bdc)(2)(dabco)] (1), [Zn-2(1,4-bdc)(tmbdc)(dabco)] (2), [Zn-2(tmbdC)(2)(dabco)] (3), [Zn-2(1,4-ndc)(2)(dabco)] (4), [Zn-2(tfbdc)(2)(dabco)] (5), and [Zn-2(tmbdC)(2)(bpy)] (8) possess varying size of pores and free apertures originating from the side groups of the 1,4-bdc derivatives. [Zn-2(1,4-bdc)(2)(bpy)] (6) and [Zn-2(2,6- ndc)(2)(bpy)] (7) have two- and threefold interpenetrating structures, respectively. The non-interpenetrating frameworks (1-5 and 8) possess surface areas in the range of 1450-2090 m(2)g(-1) and hydrogen sorption capacities of 1.7-2.1 wt % at 78 K and 1 atm. A detailed analysis of the sorption data in conjunction with structural similarities and differences concludes that porous materials with straight channels and large openings do not perform better than those with wavy channels and small openings in terms of hydrogen storage through physisorption.X11683sciescopu
    corecore