2,846 research outputs found
Pressure-Driven Metal-Insulator Transition in Hematite from Dynamical Mean-Field Theory
The Local Density Approximation combined with Dynamical Mean-Field Theory
(LDA+DMFT method) is applied to the study of the paramagnetic and magnetically
ordered phases of hematite FeO as a function of volume. As the volume
is decreased, a simultaneous 1st order insulator-metal and high-spin to
low-spin transition occurs close to the experimental value of the critical
volume. The high-spin insulating phase is destroyed by a progressive reduction
of the charge gap with increasing pressure, upon closing of which the high spin
phase becomes unstable. We conclude that the transition in FeO at
50 GPa can be described as an electronically driven volume collapse.Comment: 5 pages, 4 figure
Drug concentrations after topical and oral antiretroviral pre-exposure prophylaxis: implications for HIV prevention in women
The early closure of a clinical trial assessing the effectiveness of oral antiretroviral pre-exposure prophylaxis (PrEP) in women, FEM-PrEP, is a substantial setback for HIV prevention. Expectations of this trial were high in view of favourable results from the pre-exposure prophylaxis initiative (iPrEX) trial, which studied the same drug and dosing strategy in men who have sex with men, and the Centre for the AIDS Programme of Research in South Africa (CAPRISA 004) trial,3 which tested tenofovir gel (a topical PrEP formulation) in heterosexual women. As a result, the interim FEM-PrEP trial results, announced on April 18, 2011, which showed no protection against HIV infection, were disappointing. Using publicly available information and data from other PrEP studies, we offer a potential explanation for the results of the FEM-PrEP trial
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
Garden varieties: how attractive are recommended garden plants to butterflies?
One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butterflies, and included the five varieties specifically listed by the UK charity Butterfly Conservation as best for summer nectar. A total of 2659 flower visits from 14 butterfly and one moth species were observed. We performed a principal components analysis which showed contrasting patterns between the species attracted to Origanum vulgare and Buddleia davidii. The “butterfly bush” Buddleia attracted many nymphalines, such as the peacock, Inachis io, but very few satyrines such as the gatekeeper, Pyronia tithonus, which mostly visited Origanum. Eupatorium cannibinum had the highest Simpson’s Diversity score of 0.75, while Buddleia and Origanum were lower, scoring 0.66 and 0.50 respectively. No one plant was good at attracting all observed butterfly species, as each attracted only a subset of the butterfly community. We conclude that to create a butterfly-friendly garden, a variety of plant species are required as nectar sources for butterflies. Furthermore, garden plant recommendations can probably benefit from being more precise as to the species of butterfly they attract
Complexity of Discrete Energy Minimization Problems
Discrete energy minimization is widely-used in computer vision and machine
learning for problems such as MAP inference in graphical models. The problem,
in general, is notoriously intractable, and finding the global optimal solution
is known to be NP-hard. However, is it possible to approximate this problem
with a reasonable ratio bound on the solution quality in polynomial time? We
show in this paper that the answer is no. Specifically, we show that general
energy minimization, even in the 2-label pairwise case, and planar energy
minimization with three or more labels are exp-APX-complete. This finding rules
out the existence of any approximation algorithm with a sub-exponential
approximation ratio in the input size for these two problems, including
constant factor approximations. Moreover, we collect and review the
computational complexity of several subclass problems and arrange them on a
complexity scale consisting of three major complexity classes -- PO, APX, and
exp-APX, corresponding to problems that are solvable, approximable, and
inapproximable in polynomial time. Problems in the first two complexity classes
can serve as alternative tractable formulations to the inapproximable ones.
This paper can help vision researchers to select an appropriate model for an
application or guide them in designing new algorithms.Comment: ECCV'16 accepte
Pairing in the iron arsenides: a functional RG treatment
We study the phase diagram of a microscopic model for the superconducting
iron arsenides by means of a functional renormalization group. Our treatment
establishes a connection between a strongly simplified two-patch model by
Chubukov et al. and a five-band- analysis by Wang et al.. For a wide parameter
range, the dominant pairing instability occurs in the extended s-wave channel.
The results clearly show the relevance of pair scattering between electron and
hole pockets. We also give arguments that the phase transition between the
antiferromagnetic phase for the undoped system and the superconducting phase
may be first order
Recovery from Posttraumatic Stress Symptoms: A Qualitative Study of Attributions in Survivors of War
This study was funded by a grant from the European Commission, contract number INCO-CT-2004-50917
Interaction and filling induced quantum phases of dual Mott insulators of bosons and fermions
Many-body effects are at the very heart of diverse phenomena found in
condensed-matter physics. One striking example is the Mott insulator phase
where conductivity is suppressed as a result of a strong repulsive interaction.
Advances in cold atom physics have led to the realization of the Mott
insulating phases of atoms in an optical lattice, mimicking the corresponding
condensed matter systems. Here, we explore an exotic strongly-correlated system
of Interacting Dual Mott Insulators of bosons and fermions. We reveal that an
inter-species interaction between bosons and fermions drastically modifies each
Mott insulator, causing effects that include melting, generation of composite
particles, an anti-correlated phase, and complete phase-separation. Comparisons
between the experimental results and numerical simulations indicate intrinsic
adiabatic heating and cooling for the attractively and repulsively interacting
dual Mott Insulators, respectively
Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin
There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters
- …