37 research outputs found
Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex
Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in todayβs society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences
Multiattribute perceptual mapping with idiosyncratic brand and attribute sets
This article proposes an extremely flexible procedure for perceptual mapping based on multiattribute ratings, such that the respondent freely generates sets of both brands and attributes. Therefore, the brands and attributes are known and relevant to each participant. Collecting and analyzing such idiosyncratic datasets can be challenging. Therefore, this study proposes a modification of generalized canonical correlation analysis to support the analysis of the complex data structure. The model results in a common perceptual map with subject-specific and overall fit measures. An experimental study compares the proposed procedure with alternative approaches using predetermined sets of brands and/or attributes. In the proposed procedure, brands are better known, attributes appear more relevant, and the respondent's burden is lower. The positions of brands in the new perceptual map differ from those obtained when using fixed brand sets. Moreover, the new procedure typically yields positioning information on more brands. An empirical study on positioning of shoe stores illustrates our procedure and resulting insights. Finally, the authors discuss limitations, potential application areas, and directions for research
Is media multitasking good for cybersecurity? Exploring the relationship between media multitasking and everyday cognitive failures on self-reported risky cybersecurity behaviors
The current study focused on how engaging in media multitasking (MMT) and the experience of everyday cognitive failures impact on the individual's engagement in risky cybersecurity behaviors (RCsB). In total, 144 participants (32 males, 112 females) completed an online survey. The age range for participants was 18 to 43 years (Mβ=β20.63, SDβ=β4.04). Participants completed three scales which included an inventory of weekly MMT, a measure of everyday cognitive failures, and RCsB. There was a significant difference between heavy media multitaskers (HMM), average media multitaskers (AMM), and light media multitaskers (LMM) in terms of RCsB, with HMM demonstrating more frequent risky behaviors than LMM or AMM. The HMM group also reported more cognitive failures in everyday life than the LMM group. A regression analysis showed that everyday cognitive failures and MMT acted as significant predictors for RCsB. These results expand our current understanding of the relationship between human factors and cybersecurity behaviors, which are useful to inform the design of training and intervention packages to mitigate RCsB
The Effect of Macromolecular Crowding, Ionic Strength and Calcium Binding on Calmodulin Dynamics
The flexibility in the structure of calmodulin (CaM) allows its binding to
over 300 target proteins in the cell. To investigate the structure-function
relationship of CaM, we combined methods of computer simulation and experiments
based on circular dichroism (CD) to investigate the structural characteristics
of CaM that influence its target recognition in crowded cell-like conditions.
We developed a unique multiscale solution of charges computed from quantum
chemistry, together with protein reconstruction, coarse-grained molecular
simulations, and statistical physics, to represent the charge distribution in
the transition from apoCaM to holoCaM upon calcium binding. Computationally, we
found that increased levels of macromolecular crowding, in addition to calcium
binding and ionic strength typical of that found inside cells, can impact the
conformation, helicity and the EF hand orientation of CaM. Because EF hand
orientation impacts the affinity of calcium binding and the specificity of
CaM's target selection, our results may provide unique insight into
understanding the promiscuous behavior of calmodulin in target selection inside
cells.Comment: Accepted to PLoS Comp Biol, 201
Decision Making in Concurrent Multitasking:Do People Adapt to Task Interference?
<p>While multitasking has received a great deal of attention from researchers, we still know little about how well people adapt their behavior to multitasking demands. In three experiments, participants were presented with a multicolumn subtraction task, which required working memory in half of the trials. This primary task had to be combined with a secondary task requiring either working memory or visual attention, resulting in different types of interference. Before each trial, participants were asked to choose which secondary task they wanted to perform concurrently with the primary task. We predicted that if people seek to maximize performance or minimize effort required to perform the dual task, they choose task combinations that minimize interference. While performance data showed that the predicted optimal task combinations indeed resulted in minimal interference between tasks, the preferential choice data showed that a third of participants did not show any adaptation, and for the remainder it took a considerable number of trials before the optimal task combinations were chosen consistently. On the basis of these results we argue that, while in principle people are able to adapt their behavior according to multitasking demands, selection of the most efficient combination of strategies is not an automatic process.</p>