2,328 research outputs found

    Entropy production, viscosity bounds and bumpy black holes

    Get PDF
    The ratio of shear viscosity to entropy density, η/s, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components δg xy are massive about these backgrounds, leading to η/s < 1/(4π) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then η/s tends to a constant at T = 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then η/s ∼ T 2 ν as T → 0, with ν ≤ 1 in all cases we have considered. While these results violate simple bounds on η/s, we note that they are consistent with a possible bound on the rate of entropy production due to strain

    Emergent scale invariance of disordered horizons

    Get PDF
    We construct planar black hole solutions in AdS 3 and AdS 4 in which the boundary CFT is perturbed by marginally relevant quenched disorder. We show that the entropy density of the horizon has the scaling temperature dependence s ∼ T (d−1)/z (with d = 2, 3). The dynamical critical exponent z is computed numerically and, at weak disorder, analytically. These results lend support to the claim that the perturbed CFT flows to a disordered quantum critical theory in the IR

    Thermal conductivity at a disordered quantum critical point

    Get PDF
    © 2016, The Author(s). Abstract: Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T0.3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick

    Assessment of the Skill of Coupled Physical–Biogeochemical Models in the NW Mediterranean

    Get PDF
    Numerical modeling is a key tool to complement the current physical and biogeochemical observational datasets. It is essential for understanding the role of oceanographic processes on marine food webs and producing climate change projections of variables affecting key ecosystem functions. In this work, we evaluate the horizontalandverticalpatternsoffourstate-of-the-artcoupledphysical–biogeochemical models, three of them already published. Two of the models include data assimilation, physical and/or biological, and two do not. Simulations are compared to the most exhaustive dataset of in situ observations in the North Western Mediterranean, built ad hoc for this work, comprising gliders and conventional CTD surveys and complemented with satellite observations. The analyses are performed both in the whole domain and in four subregions (Catalan Shelf, Ebro Delta, Mallorca Channel, and Ibiza Channel), characterized by a priori divergent primary production dynamics and driving mechanisms. Overall, existing models offer a reasonable representation of physical processes including stratification, surface temperature, and surface currents, but it is shown that relatively small differences among them can lead to large differences in the response of biogeochemical variables. Our results show that all models are able to reproduce the main seasonal patterns of primary production both at the upper layer and at the deep chlorophyll maximum (DCM), as well as the differential behavior of the four subregions. However, there are significant discrepancies in the local variabilityoftheintensityofthewintermixing,phytoplanktonblooms,ortheintensityand depth of the DCM. All model runs show markedly contrasting patterns of interannual phytoplankton biomass in all four subregions. This lack of robustness should dissuade end users from using them to fill gaps in time series observations without assessing their appropriateness. Finally, we discuss the usability of these models for different applications in marine ecology, including fishery oceanography

    VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission

    Get PDF
    Synaptic vesicles in the brain harbor several soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins. With the exception of synaptobrevin2, or VAMP2 (syb2), which is directly involved in vesicle fusion, the role of these SNAREs in neurotransmission is unclear. Here we show that in mice syb2 drives rapid Ca2+-dependent synchronous neurotransmission, whereas the structurally homologous SNARE protein VAMP4 selectively maintains bulk Ca2+-dependent asynchronous release. At inhibitory nerve terminals, up- or downregulation of VAMP4 causes a correlated change in asynchronous release. Biochemically, VAMP4 forms a stable complex with SNAREs syntaxin-1 and SNAP-25 that does not interact with complexins or synaptotagmin-1, proteins essential for synchronous neurotransmission. Optical imaging of individual synapses indicates that trafficking of VAMP4 and syb2 show minimal overlap. Taken together, these findings suggest that VAMP4 and syb2 diverge functionally, traffic independently and support distinct forms of neurotransmission. These results provide molecular insight into how synapses diversify their release properties by taking advantage of distinct synaptic vesicle–associated SNAREs

    Respondent-Driven Sampling in Participatory Research Contexts: Participant-Driven Recruitment

    Get PDF
    This article reports on the use of respondent-driven sampling (RDS) in participatory and community-based research. Participant-driven recruitment (PDR) retains all of the analytic capabilities of RDS while enhancing the role of respondents in framing research questions, instrument development, data interpretation, and other aspects of the research process. Merging the capabilities of RDS with participatory research methods, PDR creates new opportunities for engaging community members in research addressing social issues and in utilizing research findings within community contexts. This article outlines PDR’s synthesis of RDS and participatory research approaches, describes how PDR is implemented in community contexts, and provides two examples of the use of PDR, illustrating its process, potentials, and challenges

    Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    Get PDF
    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust

    Get PDF
    A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region
    corecore