14 research outputs found

    Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time?

    Get PDF
    This is the final version. Available from Springer Verlag via the DOI in this record.Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.Funds have been provided by the Joint Programme—Neurodegenerative Disease Research (JPND) for the EPI-AD consortium focusing on epigenetic dysregulation in the brainstem in Alzheimer’s Disease (http://www.neurodegenerationresearch.eu/wp-content/uploads/2015/10/Factsheet_EPI-AD.pdf). The project is supported through the following funding organizations under the aegis of JPND—http://www.jpnd.eu, The Netherlands, The Netherlands Organisation for Health Research and Development (ZonMw); United Kingdom, Medical Research Council; Germany, German Federal ministry of Education and Research (BMBF); Luxembourg, National Research Fund (FNR). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 643417. Additional support has been provided by the UK Medical Research Council (MRC) Grant MR/N027973/1 (K.L), Alzheimer’s Association (US) New Investigator Research Grant NIRG-14-320878 (K.L), Alzheimer’s Society (UK) Grant AS-PG-14-038 (K.L), the Internationale Stichting Alzheimer Onderzoek (ISAO) Grants 7551 and 11532 (D.L.A vdH.), the ISAO Grant 12530 (G.K), the ISAO Grant 13515 (B.P.F.R), and the Netherlands Organization for Scientific Research (NWO) Grant 916.11.086 (Veni Award) (B.P.F.R)

    Psychosis-associated DNA methylomic variation in Alzheimer’s disease cortex

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordPsychotic symptoms are a common and debilitating feature of Alzheimer’s disease, associated with a more rapid course of decline. Current evidence from post-mortem and neuroimaging studies implicates frontal, temporal and parietal lobes, with reported disruptions in monoaminergic pathways. However, the molecular mechanisms underlying this remain unclear. In the present study, we investigated methylomic variation associated with AD psychosis in three key brain regions implicated in the etiology of psychosis (prefrontal cortex, entorhinal cortex and superior temporal gyrus) in post-mortem brain samples from 29 AD donors with psychosis and 18 matched AD donors without psychosis. We identified psychosis-associated methylomic changes in a number of loci, with these genes being enriched in known schizophrenia-associated genetic and epigenetic variants. One of these known loci resided in the AS3MT gene – previously implicated in schizophrenia in a large GWAS meta-analysis. We used bisulfite-pyrosequencing to confirm hypomethylation across four neighboring CpG sites in the ASM3T gene. Finally, our regional analysis nominated multiple CpG sites in TBX15 and WT1, which are genes that have been previously implicated in AD. Thus one potential implication from our study is whether psychosis-associated variation drives reported associations in AD case-control studies.Alzheimer’s Association USAlzheimer’s Society UKEPI-AD consortiu

    Systemic multipotent adult progenitor cells improve long-term neurodevelopmental outcomes after preterm hypoxic-ischemic encephalopathy

    Get PDF
    There is an urgent need for therapies that could reduce the disease burden of preterm hypoxic-ischemic encephalopathy. Here, we evaluate the long-term effects of multipotent adult progenitor cells (MAPC) on long-term behavioral outcomes in a preterm rat model of perinatal asphyxia. Rats of both sexes were treated with two doses of MAPCs within 24 h after the insult. Locomotor, cognitive and psychiatric impairments were evaluated starting at 1.5 (juvenile) and 6 months (adult). Hypoxia-ischemia affected locomotion, cognition, and anxiety in a sex-dependent manner, with higher vulnerability observed in males. The MAPC therapy partially attenuated deficits in object recognition memory in females of all tested ages, and in the adult males. The hypoxic insult caused delayed hyperactivity in adult males, which was corrected by MAPC therapy. These results suggest that MAPCs may have long-term benefits for neurodevelopmental outcome after preterm birth and global hypoxia-ischemia, which warrants further preclinical exploration

    An epigenome-wide association study of Alzheimer's disease blood highlights robust DNA hypermethylation in the HOXB6 gene

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.A growing number of epigenome-wide association studies have demonstrated a role for DNA methylation in the brain in Alzheimer's disease. With the aim of exploring peripheral biomarker potential, we have examined DNA methylation patterns in whole blood collected from 284 individuals in the AddNeuroMed study, which included 89 nondemented controls, 86 patients with Alzheimer's disease, and 109 individuals with mild cognitive impairment, including 38 individuals who progressed to Alzheimer's disease within 1 year. We identified significant differentially methylated regions, including 12 adjacent hypermethylated probes in the HOXB6 gene in Alzheimer's disease, which we validated using pyrosequencing. Using weighted gene correlation network analysis, we identified comethylated modules of genes that were associated with key variables such as APOE genotype and diagnosis. In summary, this study represents the first large-scale epigenome-wide association study of Alzheimer's disease and mild cognitive impairment using blood. We highlight the differences in various loci and pathways in early disease, suggesting that these patterns relate to cognitive decline at an early stage.Alzheimer's Society, United KingdomMedical Research Council (MRC)NIH, United States, R01 grantAlzheimer's Research U

    CERTL reduces C16 ceramide, amyloid-β levels, and inflammation in a model of Alzheimer's disease

    Get PDF
    BACKGROUND: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain. METHODS: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno-associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety, and locomotion. At week 12, brains were investigated for sphingolipid levels by mass spectrometry, plaques, and neuroinflammation by immunohistochemistry, gene expression, and/or immunoassay. RESULTS: Here, we report that CERTL binds to APP, modifies Aβ aggregation, and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation, and modulates microglia by decreasing their pro-inflammatory phenotype. CONCLUSION: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases

    CO2_{2} exposure as translational cross-species experimental model for panic

    No full text
    The current diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders are being challenged by the heterogeneity and the symptom overlap of psychiatric disorders. Therefore, a framework toward a more etiology-based classification has been initiated by the US National Institute of Mental Health, the research domain criteria project. The basic neurobiology of human psychiatric disorders is often studied in rodent models. However, the differences in outcome measurements hamper the translation of knowledge. Here, we aimed to present a translational panic model by using the same stimulus and by quantitatively comparing the same outcome measurements in rodents, healthy human subjects and panic disorder patients within one large project. We measured the behavioral–emotional and bodily response to CO2_{2} exposure in all three samples, allowing for a reliable cross-species comparison. We show that CO2_{2} exposure causes a robust fear response in terms of behavior in mice and panic symptom ratings in healthy volunteers and panic disorder patients. To improve comparability, we next assessed the respiratory and cardiovascular response to CO2_{2}, demonstrating corresponding respiratory and cardiovascular effects across both species. This project bridges the gap between basic and human research to improve the translation of knowledge between these disciplines. This will allow significant progress in unraveling the etiological basis of panic disorder and will be highly beneficial for refining the diagnostic categories as well as treatment strategies
    corecore