81 research outputs found
Pulmonary cryptococcosis induces chitinase in the rat
<p>Abstract</p> <p>Background</p> <p>We previously demonstrated that chronic pulmonary infection with <it>Cryptococcus neoformans </it>results in enhanced allergic inflammation and airway hyperreactivity in a rat model. Because the cell wall of <it>C. neoformans </it>consists of chitin, and since acidic mammalian chitinase (AMCase) has recently been implicated as a novel mediator of asthma, we sought to determine whether such infection induces chitinase activity and expression of AMCase in the rat.</p> <p>Methods</p> <p>We utilized a previously-established model of chronic <it>C. neoformans </it>pulmonary infection in the rat to analyze the activity, expression and localization of AMCase.</p> <p>Results</p> <p>Our studies indicate that intratracheal inoculation of <it>C. neoformans </it>induces chitinase activity within the lung and bronchoalveolar lavage fluid of infected rats. Chitinase activity is also elicited by pulmonary infection with other fungi (e.g. <it>C. albicans</it>), but not by the inoculation of dead organisms. Enhanced chitinase activity reflects increased AMCase expression by airway epithelial cells and alveolar macrophages. Systemic cryptococcosis is not associated with increased pulmonary chitinase activity or AMCase expression.</p> <p>Conclusion</p> <p>Our findings indicate a possible link between respiratory fungal infections, including <it>C. neoformans</it>, and asthma through the induction of AMCase.</p
A Common Origin for Cosmic Explosions Inferred from Fireball Calorimetry
Past studies suggest that long-duration gamma-ray bursts (GRBs) have a
standard energy of E_gamma ~ 10^51 erg in ultra-relativistic ejecta when
corrected for asymmetry ("jets"). However, recently a group of sub-energetic
bursts, including the peculiar GRB 980425 associated with SN 1998bw (E_gamma ~
10^48 erg), has been identified. Here we report radio observations of GRB
030329, the nearest burst to date, which allow us to undertake calorimetry of
the explosion. Our observations require a two-component explosion: a narrow (5
degrees) ultra-relativistic component responsible for the gamma-rays and early
afterglow, and a wide, mildly relativistic component responsible for the radio
and optical afterglow beyond 1.5 days. While the gamma-rays are energetically
minor, the total energy release, dominated by the wide component, is similar to
that of other GRBs. Given the firm link of GRB 030329 with SN 2003dh our result
suggests a common origin for cosmic explosions in which, for reasons not
understood, the energy in the highest velocity ejecta is highly variableComment: Accepted to Natur
Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory
Data from the Sudbury Neutrino Observatory have been used to constrain the
lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The
analysis was based on a search for gamma-rays from the de-excitation of the
residual nucleus that would result from the disappearance of either a proton or
neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90%
confidence for either neutron or proton decay modes. This is about an order of
magnitude more stringent than previous constraints on invisible proton decay
modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of
2) Submitted to Physical Review Letter
First Neutrino Observations from the Sudbury Neutrino Observatory
The first neutrino observations from the Sudbury Neutrino Observatory are
presented from preliminary analyses. Based on energy, direction and location,
the data in the region of interest appear to be dominated by 8B solar
neutrinos, detected by the charged current reaction on deuterium and elastic
scattering from electrons, with very little background. Measurements of
radioactive backgrounds indicate that the measurement of all active neutrino
types via the neutral current reaction on deuterium will be possible with small
systematic uncertainties. Quantitative results for the fluxes observed with
these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000
Conference, Sudbury, Canada, June 16-21, 2000 to be published in the
Proceeding
Analytical model for the calculation of lateral velocity distributions in potential cross-sections
[EN] The hydraulic modeling of water depth and flow velocities in open channel flows that were fitted by power-law cross-section stand out for their versatility, allowing their use in numerous practical applications, both in natural and artificial channels. The determination of the hydraulic variables of depth and average velocity has been widely studied in potential cross-sections; however, the variation seen in these variables along the cross-section was not found in the literature. Knowledge of this variation allows the development of studies (e.g. to know the approximate damage in different areas of the cross-section, to analyse sediment transport, or other applications in river hydraulics). This paper presents a methodology which allows calculation of the hydraulic variables in any area of a power-law cross-section. The methodology is applied to symmetrical cross-sections, comparing its generated results with the obtained values by different computational hydraulic codes, which are thoroughly accepted by scientific community, such as CES, HEC-RAS and IBER. The obtained predictions of hydraulic parameters (using the explicit formulation described in this research) present very low errors when compared with results of other models, with great computational cost. These errors reach a root mean square error (RMSE) of 0.13 and 0.05 in the determination of velocities' lateral distribution and the ratio between velocity and average velocity. These values indicate a very successful validation for the analysed symmetrical sections.[ES] La modelización hidráulica de calados y velocidades de flujo, en cauces con secciones que admiten
una representación de tipo potencial, se destaca por su versatilidad, permitiendo su utilización en
numerosas aplicaciones prácticas tanto en canales naturales como artificiales. El cálculo de las
variables hidráulicas (calado y velocidad media) ha sido ampliamente estudiado para este tipo de
secciones. Sin embargo, en la literatura técnica no se han encontrado estudios que muestren la
variación de estas magnitudes a lo largo de la sección transversal. El conocimiento de esta variación
permite desarrollar estudios (ejemplo: conocer de manera aproximada los daños en diferentes zonas
de la sección, analizar el transporte de sedimentos, estudiar los procesos de erosión u otras aplicaciones en hidráulica fluvial). Presentamos una metodologÃa que permite el cálculo de las variables
hidráulicas en cualquier zona de una sección tipo potencial. La metodologÃa es aplicada a secciones
simétricas, comparando los resultados generados con los obtenidos por diferentes códigos
hidráulicos computacionales ampliamente aceptados por la comunidad cientÃfica (p-e- CES, HECRAS e IBER). Las predicciones de los parámetros hidráulicos obtenidas (usando la formulación
explÃcita descrita en este artÃculo) presentan errores muy bajos, en comparación con otros modelos
con mayor costo computacional. Estos errores alcanzan un valor promedio para la raÃz del error
cuadrático medio (RMSE) en el cálculo de la distribución lateral de velocidades de 0.13 y de 0.05, en el
cálculo de la relación de velocidades respecto a la velocidad media. Estos valores indican una
validación muy satisfactoria para las secciones simétricas analizadas.Sánchez-Romero, F.; Pérez-Sánchez, M.; López Jiménez, PA. (2018). Modelo analÃtico para el cálculo de distribuciones de velocidad laterales en secciones tipo potencial-ley. RIBAGUA - Revista Iberoamericana del Agua. 5(1):29-47. doi:10.1080/23863781.2018.1442189S29475
T Lymphocytes Promote the Antiviral and Inflammatory Responses of Airway Epithelial Cells
T cells modulate the antiviral and inflammatory responses of airway epithelial cells to human rhinoviruses (HRV)
Subregional DXA-derived vertebral bone mineral measures are stronger predictors of failure load in specimens with lower areal bone mineral density, compared to those with higher areal bone mineral density
Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study investigated whether DXA-derived bone parameters in vertebral subregions were better predictors of vertebral bone strength in specimens with low aBMD, compared to those with higher aBMD. Twenty-five lumbar vertebrae (15 embalmed and 10 fresh-frozen) were scanned with posteroanterior- (PA) and lateral-projection DXA, and then mechanically tested in compression to ultimate failure. Whole-vertebral aBMD and bone mineral content (BMC) were measured from the PA- and lateral-projection scans and within 6 intravertebral subregions. Multivariate regression was used to predict ultimate failure load by BMC, adjusted for vertebral size and specimen fixation status across the whole specimen set, and when subgrouped into specimens with low aBMD and high aBMD. Adjusted BMC explained a substantial proportion of variance in ultimate vertebral load, when measured over the whole vertebral area in lateral projection (adjusted R2 0.84) and across the six subregions (ROIs 2–7) (adjusted R2 range 0.58–0.78). The association between adjusted BMC, either measured subregionally or across the whole vertebral area, and vertebral failure load, was increased for the subgroup of specimens with identified ‘low aBMD’, compared to those with ‘high aBMD’, particularly in the anterior subregion where the adjusted R2 differed by 0.44. The relative contribution of BMC measured in vertebral subregions to ultimate failure load is greater among specimens with lower aBMD, compared to those with higher aBMD, particularly in the anterior subregion of the vertebral body
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37Â MJ of fusion for 1.92Â MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …